| 注册
首页|期刊导航|航空学报|融合试验-仿真标定数据的机翼应变载荷关系神经网络模型

融合试验-仿真标定数据的机翼应变载荷关系神经网络模型

施英杰 刘斌超 鲁嵩嵩 陈亮 尚海 鲍蕊

航空学报2025,Vol.46Issue(19):106-117,12.
航空学报2025,Vol.46Issue(19):106-117,12.DOI:10.7527/S1000-6893.2024.30921

融合试验-仿真标定数据的机翼应变载荷关系神经网络模型

Neural network model for wing strain-load relationship based on fusion of real and virtual data

施英杰 1刘斌超 1鲁嵩嵩 2陈亮 3尚海 4鲍蕊2

作者信息

  • 1. 北京航空航天大学 航空科学与工程学院 强度与结构完整性全国重点实验室,北京 100191||北京航空航天大学 国际创新研究院,杭州 311115
  • 2. 北京航空航天大学 航空科学与工程学院 强度与结构完整性全国重点实验室,北京 100191
  • 3. 航空工业沈阳飞机设计研究所,沈阳 110035
  • 4. 航空工业北京长城计量测试技术研究所,北京 100095
  • 折叠

摘要

Abstract

When establishing a strain-load relationship model for aircraft structures,ground calibration tests can obtain high-fidelity data but are trapped with limited test ranges,while finite element simulations are not limited by test ranges but the data fidelity is low.This leads to difficulties in achieving win-win situation of accuracy and applicability based solely on either ground calibration test data or finite element simulation data.To address the above issue,two multi-level neural network models fusing real and virtual data are put forward,a mapping-based model and a compensation-based model.A method for measuring the model's cognitive degree based on the variance of base learners is estab-lished and embedded into the compensation-based model.A neural network model with high accuracy,wide applica-bility,and the capability to forewarn unreliable prediction results is then developed.This developed model is validated using a scaled-down wing.Compared with complete reliance on real data from ground calibration tests,the load mod-els based on fusion of multi-source data demonstrate superior capabilities,and the compensation-based model is bet-ter than the mapping-based one.Moreover,the compensation-based model can effectively identify the data samples with poor cognitive degree of the load model and thereby provide warnings for unreliable prediction results.

关键词

应变载荷关系/飞机结构/数据融合/神经网络模型/子学习器

Key words

strain load relationship/aircraft structure/data fusion/neural network model/base learner

分类

航空航天

引用本文复制引用

施英杰,刘斌超,鲁嵩嵩,陈亮,尚海,鲍蕊..融合试验-仿真标定数据的机翼应变载荷关系神经网络模型[J].航空学报,2025,46(19):106-117,12.

基金项目

强度与结构完整性全国重点实验室自主研究课题 National Key Laboratory of Strength and Structural Integrity Independent Research Project ()

航空学报

OA北大核心

1000-6893

访问量0
|
下载量0
段落导航相关论文