| 注册
首页|期刊导航|电力系统保护与控制|基于多尺度二次特征提取的短期电力负荷预测模型

基于多尺度二次特征提取的短期电力负荷预测模型

李楠 金淳熙 陶亮 黄亮

电力系统保护与控制2025,Vol.53Issue(19):114-126,13.
电力系统保护与控制2025,Vol.53Issue(19):114-126,13.DOI:10.19783/j.cnki.pspc.241360

基于多尺度二次特征提取的短期电力负荷预测模型

A short-term electric load forecasting model based on multi-scale secondary feature extraction

李楠 1金淳熙 2陶亮 3黄亮3

作者信息

  • 1. 现代电力系统仿真控制与绿色电能新技术教育部重点实验室,吉林 吉林 132012||东北电力大学电气工程学院,吉林 吉林 132012
  • 2. 东北电力大学电气工程学院,吉林 吉林 132012
  • 3. 国家电网吉林省电力有限公司四平供电公司,吉林 四平 136000
  • 折叠

摘要

Abstract

To fully explore the complex temporal relationships among the inherent multi-scale features(MSF)of electrical load data and further improve the performance of electricity load forecasting models,especially their accuracy during holidays,a short-term electricity load forecasting model based on multi-scale secondary feature extraction is proposed.First,the Prophet algorithm is used to decompose and fit the load data,extracting components at different scales,which are then combined with correlated weather data to construct a multivariant dataset.Then,an improved feature pyramid network(IFPN)is employed to match the multi-scale characteristics of load data.A convolutional feature enhancement module is designed to strengthen the model's ability to express holiday-specific features,achieving the first extraction of MSF.Leveraging the advantages of temporal convolutional neural networks,the model deeply mines the temporal dependencies among the primary features.Squeeze-and-excitation networks(SENet)is introduced to adaptively assign weights to features,completing the secondary extraction of MSF.Finally,load forecasting is performed using a Transformer model optimized by the Osprey algorithm.Validation on two domestic and international load datasets shows that the proposed model outperforms comparison models,particularly in improving prediction accuracy during holidays.

关键词

短期电力负荷预测/Prophet算法/二次特征提取/改进的特征金字塔网络/多尺度时间卷积网络

Key words

short term power load forecasting/Prophet algorithm/secondary feature extraction/IFPN/MSTCN

引用本文复制引用

李楠,金淳熙,陶亮,黄亮..基于多尺度二次特征提取的短期电力负荷预测模型[J].电力系统保护与控制,2025,53(19):114-126,13.

基金项目

This work is supported by the General Program of National Natural Science Foundation of China(No.52277084). 国家自然科学基金面上项目资助(52277084) (No.52277084)

电力系统保护与控制

OA北大核心

1674-3415

访问量0
|
下载量0
段落导航相关论文