| 注册
首页|期刊导航|江汉大学学报(自然科学版)|基于YOLO-Pose的遮挡场景下的多人姿态估计算法

基于YOLO-Pose的遮挡场景下的多人姿态估计算法

侯顺智 陶俊 袁冬华 吴文俊 隗一凡

江汉大学学报(自然科学版)2025,Vol.53Issue(5):85-96,12.
江汉大学学报(自然科学版)2025,Vol.53Issue(5):85-96,12.DOI:10.16389/j.cnki.cn42-1737/n.2025.05.010

基于YOLO-Pose的遮挡场景下的多人姿态估计算法

Multi-person Pose Estimation Algorithm Based on YOLO-Pose in Occluded Scenes

侯顺智 1陶俊 1袁冬华 1吴文俊 1隗一凡1

作者信息

  • 1. 江汉大学 人工智能学院,湖北 武汉 430056
  • 折叠

摘要

Abstract

Human pose estimation plays a crucial role in various real-world applications,such as sports training,robot behavior training,and intelligent interaction.Due to the shortcomings of complex neural network structures and the low efficiency of most human pose estimation algorithms,a multi-person pose estimation algorithm,YOLO-Pose-GSNS,based on improved YOLO-Pose,was proposed.To reduce the parameters and computational complexity of the module and achieve lightweight by improving computational efficiency,the GSConv convolution module was used instead of the ordinary Conv convolution calculation.Using the NAMAttention module to redesign its feature fusion layer and improve its feature extraction capability,while using four different detection heads to enhance the algorithm's detection of occluded scenes.Introducing the SIoU loss function to redefine the loss function of bounding box regression and improve the accuracy of localization.Tested on the OC_Human dataset,the improved YOLO-Pose-GSNS model showed a 7.4%reduction in model size compared to the baseline model,a 3.4%decrease(19.5)in GFLOPs,the P-value,R-value,mAP@0.5,and mAP@0.5:0.95 increased by 8.7%,13.4%,12.1%,and 17.2%,respectively.The YOLO-Pose-GSNS algorithm proposed in this article not only achieves the model's lightweight,but also ensures an improvement in the accuracy of multi-person pose estimation in occluded scenes.

关键词

多人姿态估计/YOLO-Pose/遮挡场景/轻量化/NAMAttention

Key words

multi-person pose estimation/YOLO-Pose/occluded scene/lightweight/NAMAttention

分类

信息技术与安全科学

引用本文复制引用

侯顺智,陶俊,袁冬华,吴文俊,隗一凡..基于YOLO-Pose的遮挡场景下的多人姿态估计算法[J].江汉大学学报(自然科学版),2025,53(5):85-96,12.

基金项目

江汉大学研究生培养基金(301004310001) (301004310001)

江汉大学学报(自然科学版)

1673-0143

访问量0
|
下载量0
段落导航相关论文