| 注册
首页|期刊导航|机电工程技术|基于Transformer-LSTM的高炉炼铁硅含量软测量方法

基于Transformer-LSTM的高炉炼铁硅含量软测量方法

钱子豪 王磊 靳晟

机电工程技术2025,Vol.54Issue(19):35-40,114,7.
机电工程技术2025,Vol.54Issue(19):35-40,114,7.DOI:10.3969/j.issn.1009-9492.2025.00003

基于Transformer-LSTM的高炉炼铁硅含量软测量方法

Soft Measurement Method of Silicon Content in Blast Furnace Ironmaking Based on Transformer-LSTM

钱子豪 1王磊 2靳晟1

作者信息

  • 1. 新疆农业大学计算机与信息工程学院,乌鲁木齐 830052
  • 2. 新疆电子研究所股份有限公司,乌鲁木齐 830013
  • 折叠

摘要

Abstract

Silicon content indicators that are difficult to measure in real-time during blast furnace ironmaking process.It is of great significance to study the rapid prediction method to guide the follow-up operation of the process and guarantee the final quality.Therefore,a new soft measurement framework for silicon content in blast furnace ironmaking is designed based on deep learning algorithm.Considering the impact of high temperature and pressure production environment on the sensor,the collected data mostly contains outliers and noise.The abnormal data filtering module based on One-class SVM and the mixed feature noise reduction module based on Fourier Transform and Gaussian Smoothing are designed.Considering the strong nonlinearity and temporal dependence of industrial data,a regression module based on the improved Transformer-LSTM model is designed.Finally,using the actual industrial process data set of blast furnace ironmaking,the mean square error of the model is reduced by 1.1%and 16.07%by the anomaly filtering module and the noise reduction module through the multi-model comparison experiment and the ablation experiment of model functions.The prediction error of Transformer LSTM model is0.63%,4.7%and 2.4%lower than that of LSTM,GRU and TCN,respectively.And the number of stacking layers of the recurrent neural network is effectively reduced.

关键词

软测量/高炉炼铁/质量预测/特征降噪/变换/LSTM

Key words

soft measurement/blast-furnace ironmaking/quality prediction/feature noise reduction/transformer/LSTM

分类

信息技术与安全科学

引用本文复制引用

钱子豪,王磊,靳晟..基于Transformer-LSTM的高炉炼铁硅含量软测量方法[J].机电工程技术,2025,54(19):35-40,114,7.

基金项目

中央引导地方科技发展资金项目(ZYYD2024JD28) (ZYYD2024JD28)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文