| 注册
首页|期刊导航|机电工程技术|基于S变换与改进AlexNet网络的滚动轴承故障智能诊断

基于S变换与改进AlexNet网络的滚动轴承故障智能诊断

雷兵 李响 陈红 唐佳桃

机电工程技术2025,Vol.54Issue(19):70-76,88,8.
机电工程技术2025,Vol.54Issue(19):70-76,88,8.DOI:10.3969/j.issn.1009-9492.2025.19.013

基于S变换与改进AlexNet网络的滚动轴承故障智能诊断

Intelligent Diagnosis of Rolling Bearing Faults Based on S-transform and Improved AlexNet Network

雷兵 1李响 1陈红 1唐佳桃1

作者信息

  • 1. 江西开放大学智能技术学院,南昌 330025
  • 折叠

摘要

Abstract

Aiming at the problem that insufficient extraction of the correlation characteristics of information time series in traditional fault identification methods leads to low accuracy of fault diagnosis and identification,the S-transform graph encoding method is introduced into the fault identification of rolling bearings,and an intelligent fault diagnosis method for rolling bearings based on S-transform and improved AlexNet network is proposed.The S-transform graph encoding technology is used to convert one-dimensional vibration signals into two-dimensional image feature data,so that the loss of weak feature information is effectively avoided.The size of the converted two-dimensional images is adjusted to an appropriate size,and finally,the adaptive feature extraction capability of the improved AlexNet network is utilized to realize the intelligent fault identification of rolling bearings.Verification is carried out based on the rolling bearing fault data collected by the fault simulation experimental platform.The results show that,compared with other graph encoding methods as well as the improved LeNet and SVM classifier methods,the proposed method achieves a rolling bearing fault identification accuracy of 99.57%,and it exhibits higher identification accuracy and better generalization performance.

关键词

滚动轴承/S变换/故障智能识别/图编码方法/改进AlexNet网络/二维图像

Key words

rolling bearing/S-transform/fault intelligent recognition/graph encoding method/improved AlexNet network/2D image

分类

机械制造

引用本文复制引用

雷兵,李响,陈红,唐佳桃..基于S变换与改进AlexNet网络的滚动轴承故障智能诊断[J].机电工程技术,2025,54(19):70-76,88,8.

基金项目

江西省教育厅科学技术研究项目(GJJ2207604,GJJ2207601,GJJ2403503) (GJJ2207604,GJJ2207601,GJJ2403503)

江西开放大学校级科研项目(JKND2407) (JKND2407)

机电工程技术

1009-9492

访问量2
|
下载量0
段落导航相关论文