| 注册
首页|期刊导航|控制理论与应用|双空间特征自适应融合的故障检测方法

双空间特征自适应融合的故障检测方法

刘美枝 孔祥玉 安秋生 罗家宇

控制理论与应用2025,Vol.42Issue(9):1721-1732,12.
控制理论与应用2025,Vol.42Issue(9):1721-1732,12.DOI:10.7641/CTA.2024.30492

双空间特征自适应融合的故障检测方法

Fault detection method with adaptive fusion of dual-space features

刘美枝 1孔祥玉 2安秋生 3罗家宇2

作者信息

  • 1. 火箭军工程大学导弹工程学院,陕西西安 710025||山西大同大学物理与电子科学学院,山西大同 037009
  • 2. 火箭军工程大学导弹工程学院,陕西西安 710025
  • 3. 山西师范大学数学与计算机科学学院,山西临汾 041004
  • 折叠

摘要

Abstract

Due to the complex structure of the large complex industrial processes,the process variables often exhibit hybrid correlations.A single model cannot accurately represent the hybrid correlations between variables,resulting in a large number of missed alarms or false alarms in the fault detection.To address this problem,a fault detection method with adaptive fusion of dual-space features is proposed.Firstly,the Gaussian linear features and non-Gaussian nonlinear features are extracted in the original data space and the residual kernel space,respectively,using a hierarchical feature extraction strategy.Then,the Bayesian inference is utilized to convert the monitoring statistics from different spaces into failure probabilities,and an adaptive probabilistic weighting strategy is designed to construct the total probabilistic statistical indices for monitoring the process operation status.Finally,several experiments on a numerical simulation and the Tennessee Eastman benchmark process are presented to demonstrate the feasibility and effectiveness of the proposed method.

关键词

故障检测/特征提取/混合相关性/贝叶斯推理/统计指标

Key words

fault detection/feature extraction/hybrid correlations/Bayesian inference/statistical index

引用本文复制引用

刘美枝,孔祥玉,安秋生,罗家宇..双空间特征自适应融合的故障检测方法[J].控制理论与应用,2025,42(9):1721-1732,12.

基金项目

国家自然科学基金项目(62273354,61673387),山西省高等学校科技创新项目(2022L434)资助.Supported by the National Natural Science Foundation of China(62273354,61673387)and the Science and Technology Innovation Project of Colleges and Universities in Shanxi Province(2022L434). (62273354,61673387)

控制理论与应用

OA北大核心

1000-8152

访问量0
|
下载量0
段落导航相关论文