| 注册
首页|期刊导航|控制理论与应用|移动机器人导航与对抗控制的强化学习方法研究

移动机器人导航与对抗控制的强化学习方法研究

蒋坤 操菁瑜 柳文章 孙长银 董璐

控制理论与应用2025,Vol.42Issue(9):1757-1765,9.
控制理论与应用2025,Vol.42Issue(9):1757-1765,9.DOI:10.7641/CTA.2024.30164

移动机器人导航与对抗控制的强化学习方法研究

Research on reinforcement learning methods for navigation and adversarial control in mobile robots

蒋坤 1操菁瑜 1柳文章 2孙长银 3董璐4

作者信息

  • 1. 东南大学自动化学院,江苏南京 210096
  • 2. 安徽大学人工智能学院,安徽 合肥 230601
  • 3. 东南大学自动化学院,江苏南京 210096||自主无人系统技术教育部工程研究中心,安徽 合肥 230601||安徽省无人系统与智能技术工程研究中心,安徽 合肥 230601
  • 4. 东南大学网络空间安全学院,江苏南京 211189
  • 折叠

摘要

Abstract

The traditional robot navigation and decision-making methods rely heavily on the construction of high-precision maps,and are difficult to adapt to dynamic and complex application scenarios.In addition,the existing navigation and control methods based on machine learning algorithms have the defects of unsatisfactory generalization and transfer-ability in real systems.To solve the above problems,a mobile robot navigation and real-time confrontation method based on multimodal information fusion and reinforcement learning framework is proposed in this paper.First of all,various information preprocessing modules are used to preprocess and fuse the RGB images,LiDAR data and other vector infor-mation collected by the robot,so as to realize the robot's comprehensive perception of the environment.Then,the system directly outputs the motion control commands of the robot based on the action network,allowing for the end-to-end control of the mobile robot without a model.Furthermore,the noise and dynamic factors in the real environment are fully consid-ered in the simulation system,and the model is fine-tuned and corrected by using the test data migrated to the real robot.Finally,experiments on navigation and real-time confrontation tasks of different difficulties are carried out in the simulation environment and the real environment,and the effectiveness of the proposed robot navigation and real-time confrontation method based on reinforcement learning is verified.

关键词

强化学习/移动机器人/导航避障/对抗策略

Key words

reinforcement learning/mobile robot/navigation and obstacle avoidance/confrontation policy

引用本文复制引用

蒋坤,操菁瑜,柳文章,孙长银,董璐..移动机器人导航与对抗控制的强化学习方法研究[J].控制理论与应用,2025,42(9):1757-1765,9.

基金项目

国家自然科学基金项目(62236002,61921004,62173251)资助.Supported by the National Natural Science Foundation of China(62236002,61921004,62173251). (62236002,61921004,62173251)

控制理论与应用

OA北大核心

1000-8152

访问量0
|
下载量0
段落导航相关论文