| 注册
首页|期刊导航|控制理论与应用|基于长短时记忆神经网络的降压变换器自适应控制

基于长短时记忆神经网络的降压变换器自适应控制

贺伟 严佳成 周旺平 李洪杰

控制理论与应用2025,Vol.42Issue(9):1838-1848,11.
控制理论与应用2025,Vol.42Issue(9):1838-1848,11.DOI:10.7641/CTA.2024.30355

基于长短时记忆神经网络的降压变换器自适应控制

Adaptive control for buck converter based on long short-term memory neural network

贺伟 1严佳成 1周旺平 1李洪杰2

作者信息

  • 1. 南京信息工程大学大气环境与装备技术协同创新中心,江苏南京 210044
  • 2. 西安交通大学电气工程学院,陕西西安 710049
  • 折叠

摘要

Abstract

The model-free control method based on deep reinforcement learning avoids the complex process of system modeling and addresses the challenges of nonlinear system control as well as captures excellent robustness.In this paper,a model-free adaptive control strategy is proposed for a DC-DC buck converter system with constant power load using long short-term memory neural network.Firstly,a state space composed of continuous voltage error signals is defined,transforming the error signals into input states for the control algorithm.Subsequently,a discrete action space is constructed based on the reference voltage,and a reward function is designed.The action space converts the algorithm's output into duty cycles,and a reward signal is assigned based on the controlled system's next-state evaluation to assess the algorithm's control effectiveness.The long short-term memory neural network serves as a state-action value function estimator for the double deep Q network,calculating the Q-values for various decisions under the input state and selecting the decision with the highest Q-value as the optimal output.Finally,simulation and experimental studies are conducted on the DC-DC buck converter system with a constant power load under the control of the proposed method.Experimental results demonstrate the excellent tracking performance of the control strategy,and in the presence of external disturbances,the system under this control strategy exhibits robust behavior.

关键词

恒功率负载/直流降压变换器/长短时记忆神经网络/双深度Q网络/深度强化学习

Key words

constant power load/DC-DC buck converter/long short-term memory neural network/double deep Q network/deep reinforcement learning

引用本文复制引用

贺伟,严佳成,周旺平,李洪杰..基于长短时记忆神经网络的降压变换器自适应控制[J].控制理论与应用,2025,42(9):1838-1848,11.

基金项目

国家自然科学基金项目(62373195,62173205,52077105,62073169)资助.Supported by the National Natural Science Foundation of China(62373195,62173205,52077105,62073169). (62373195,62173205,52077105,62073169)

控制理论与应用

OA北大核心

1000-8152

访问量0
|
下载量0
段落导航相关论文