| 注册
首页|期刊导航|聊城大学学报(自然科学版)|两类不确定单摆系统的确信可靠性分析

两类不确定单摆系统的确信可靠性分析

赵云鹏 刘利英

聊城大学学报(自然科学版)2025,Vol.38Issue(5):654-662,678,10.
聊城大学学报(自然科学版)2025,Vol.38Issue(5):654-662,678,10.DOI:10.19728/j.issn1672-6634.2025010014

两类不确定单摆系统的确信可靠性分析

Belief reliability analysis of the complex uncertain single pendulum system

赵云鹏 1刘利英1

作者信息

  • 1. 聊城大学数学科学学院,山东聊城 252059
  • 折叠

摘要

Abstract

Belief reliability theory has proven to be an effective tool for analyzing the reliability of systems with small sample data.This paper investigates uncertain pendulum systems and introduces two belief reliability metrics:belief reliability function and belief reliability lifetime.Two models are studied:the logarithmic utility uncertain time-varying pendulum model and the linear time-shift uncertain time-varying pendulum model.Firstly,based on the logarithmic utility function,the logarithmic utility uncertain time-varying pendulum model is constructed,and an analytical expression for its belief reliability function is derived.The computational formulas and numerical algorithms for the belief reliability lifetime are also provided.Second,the noise in the pendulum system is modeled as linear time-shift noise,and the linear time-shift uncertain time-varying pendulum model is proposed.The computational formula for its certainty reliability function is derived,and a numerical solution method is introduced.Numerical examples demon-strate that these two certainty reliability metrics effectively measure the reliability of uncertain pendulum systems.This study provides new theoretical foundations and computational tools for reliability analysis of uncertain systems with small sample data.

关键词

不确定微分方程/确信可靠性/不确定单摆方程/不确定逆分布函数

Key words

uncertain differential equation/belief reliability/uncertain single pendulum equation/inverse uncertainty distribution

分类

数理科学

引用本文复制引用

赵云鹏,刘利英..两类不确定单摆系统的确信可靠性分析[J].聊城大学学报(自然科学版),2025,38(5):654-662,678,10.

基金项目

山东省自然科学基金项目(ZR2020MA026)资助 (ZR2020MA026)

聊城大学学报(自然科学版)

1672-6634

访问量0
|
下载量0
段落导航相关论文