| 注册
首页|期刊导航|聊城大学学报(自然科学版)|基于深度强化学习的光无线融合接入网端到端网络切片映射

基于深度强化学习的光无线融合接入网端到端网络切片映射

李若宇 望运武 顾家骅 朱敏

聊城大学学报(自然科学版)2025,Vol.38Issue(5):669-678,10.
聊城大学学报(自然科学版)2025,Vol.38Issue(5):669-678,10.DOI:10.19728/j.issn1672-6634.2025010004

基于深度强化学习的光无线融合接入网端到端网络切片映射

End-to-end network slicing mapping for converged optical-wireless access networks using deep reinforcement learning

李若宇 1望运武 2顾家骅 2朱敏2

作者信息

  • 1. 东南大学信息科学与工程学院,江苏南京 210096
  • 2. 东南大学移动通信国家重点实验室,江苏南京 210096
  • 折叠

摘要

Abstract

In converged optical-wireless access networks,optical wavelengths are responsible for carrying wireless data,and their transmission rate in turn affects the allocation of computing and optical bandwidth resources.However,the independent scheduling for the optical and wireless network sides tends to be in-flexible,resulting in inefficient cooperation and utilization of optical and wireless resources.In this paper,we investigate the end-to-end(E2E)optical-wireless network slicing mapping problem in converged opti-cal-wireless access networks.To combine user requirements in the wireless side and radio access network(RAN)slicing scheduling in the optical side,we formulate an E2E network slicing mapping model and pro-pose a deep reinforcement learning(DRL)method.To enhance the decision-making process of DRL a-gent,a slicing request decomposition scheme is proposed,in which each slicing request is divided into two sub-requests.We evaluate the effectiveness of the proposed algorithm through simulations on large-scale 33-node networks.The results demonstrate the superiority of our proposed DRL over the heuristic algo-rithm,achieving an 34.4%reduction in large-scale networks.

关键词

端到端光无线网络切片/无线接入网(RAN)切片/深度强化学习

Key words

end-to-end optical-wireless network slicing/radio access network(RAN)slicing/deep rein-forcement learning

分类

信息技术与安全科学

引用本文复制引用

李若宇,望运武,顾家骅,朱敏..基于深度强化学习的光无线融合接入网端到端网络切片映射[J].聊城大学学报(自然科学版),2025,38(5):669-678,10.

基金项目

国家自然科学基金项目(62271135)资助 (62271135)

聊城大学学报(自然科学版)

1672-6634

访问量0
|
下载量0
段落导航相关论文