| 注册
首页|期刊导航|皮肤性病诊疗学杂志|基于机器学习的HIV和性传播感染风险评估研究进展

基于机器学习的HIV和性传播感染风险评估研究进展

王劲燊 李海逸 梁鹏 阿力克斯·木合亚提 黄澍杰 赵培祯 王成

皮肤性病诊疗学杂志2025,Vol.32Issue(9):673-678,6.
皮肤性病诊疗学杂志2025,Vol.32Issue(9):673-678,6.DOI:10.3969/j.issn.1674-8468.2025.09.010

基于机器学习的HIV和性传播感染风险评估研究进展

Research progress on machine learning-based risk assessment for HIV and sexually trans-mitted infections

王劲燊 1李海逸 2梁鹏 2阿力克斯·木合亚提 2黄澍杰 3赵培祯 3王成3

作者信息

  • 1. 福州市疾病预防控制中心,福建 福州 350004||南方医科大学皮肤病医院,广东 广州 510091
  • 2. 南方医科大学皮肤病医院,广东 广州 510091||南方医科大学公共卫生学院,广东 广州 510515
  • 3. 南方医科大学皮肤病医院,广东 广州 510091||南方医科大学全球健康研究院,广东 广州 510091
  • 折叠

摘要

Abstract

HIV and sexually transmitted infections(STIs)are critical global public health is-sues.In resource-constrained settings,the accurate identification of high-risk populations is criti-cal for the effective prevention of HIV/STI transmission.As a pivotal subset of artificial intelli-gence,machine learning offers advanced capabilities in data processing and pattern recognition,providing novel approaches for risk assessment in HIV/STIs,and is an emerging focus of research in this field.This review summarizes recent advances in machine learning for assessing the risk of HIV/STI infections,with a focus on comparing the strengths and limitations of different algo-rithms.It provides an in-depth analysis of the main risk factors among various high-risk popula-tions and discusses the shortcomings and challenges of current research regarding sample represen-tativeness,model interpretability,and integration with intervention strategies.The aim is to pro-vide rational and practical guidance for future research.

关键词

性传播感染/HIV/机器学习/风险评估

Key words

sexually transmitted infections/HIV/machine learning/risk assessment

引用本文复制引用

王劲燊,李海逸,梁鹏,阿力克斯·木合亚提,黄澍杰,赵培祯,王成..基于机器学习的HIV和性传播感染风险评估研究进展[J].皮肤性病诊疗学杂志,2025,32(9):673-678,6.

基金项目

广东省医学科研基金(B2025372) (B2025372)

广州市科技计划项目(2024A04J4485) (2024A04J4485)

皮肤性病诊疗学杂志

1674-8468

访问量0
|
下载量0
段落导航相关论文