| 注册
首页|期刊导航|软件导刊|复杂工况下的轴承故障诊断方法综述

复杂工况下的轴承故障诊断方法综述

马新娜 张策 李豪 何畔

软件导刊2025,Vol.24Issue(9):9-18,10.
软件导刊2025,Vol.24Issue(9):9-18,10.DOI:10.11907/rjdk.241564

复杂工况下的轴承故障诊断方法综述

Review of Bearing Fault Diagnosis Methods under Complex Working Conditions

马新娜 1张策 2李豪 2何畔2

作者信息

  • 1. 石家庄铁道大学 信息科学与技术学院||石家庄铁道大学 河北省电磁环境效应与信息处理学科重点实验室
  • 2. 石家庄铁道大学 信息科学与技术学院||石家庄铁道大学 石家庄市人工智能重点实验室,河北 石家庄 050043
  • 折叠

摘要

Abstract

Bearing is an important part of rotating machinery.In practical applications,the operating environment of bearing is complex and changeable.It is a research hotspot to accurately judge the bearing fault under complex working conditions.Therefore,the sample imbalance in bearing fault diagnosis under complex working conditions and the transfer learning under variable working conditions are discussed.In the problem of sample imbalance,the advantages,disadvantages and applicable scenarios of the involved methods are analyzed from the perspec-tives of resampling technology and model-based generation method.In the part of transfer learning,the transfer method based on samples,fea-tures and parameters is explained in detail,and its application prospect in variable condition bearing fault diagnosis is discussed.In addition,it also looks forward to new technologies and methods that may emerge in the future,such as algorithms that combine deep learning and do-main adaptation to deal with more complex working conditions and data scenarios.The purpose is to provide reference for researchers in the field of bearing fault diagnosis,so as to further improve the accuracy and reliability of model diagnosis.

关键词

复杂工况/轴承故障诊断/样本不平衡/迁移学习

Key words

complex working conditions/bearing fault diagnosis/sample imbalance/transfer learning

分类

信息技术与安全科学

引用本文复制引用

马新娜,张策,李豪,何畔..复杂工况下的轴承故障诊断方法综述[J].软件导刊,2025,24(9):9-18,10.

基金项目

国家自然科学基金项目(12172234) (12172234)

河北省自然科学基金项目(A2021210022) (A2021210022)

河北省"三三三人才"资助项目(A202101018) (A202101018)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文