| 注册
首页|期刊导航|上海航天(中英文)|基于GPU加速改进粒子群算法的多波束卫星通信资源优化

基于GPU加速改进粒子群算法的多波束卫星通信资源优化

宋自阳 张廷尧 赵家庆 慕忠成 黄益新 付哲楷

上海航天(中英文)2025,Vol.42Issue(5):121-130,10.
上海航天(中英文)2025,Vol.42Issue(5):121-130,10.DOI:10.19328/j.cnki.2096-8655.2025.05.014

基于GPU加速改进粒子群算法的多波束卫星通信资源优化

GPU-Accelerated Particle Swarm Optimization for Resource Allocation in Multibeam Satellite Communications

宋自阳 1张廷尧 2赵家庆 2慕忠成 1黄益新 1付哲楷2

作者信息

  • 1. 上海交通大学 航空航天学院,上海 200240
  • 2. 上海卫星工程研究所,上海 201109
  • 折叠

摘要

Abstract

With the widespread application of low-Earth-orbit(LEO)constellations and multi-beam satellite systems in broadband access,Internet of Things(IoT),and other fields,the scenario requirements of constellation dynamic Earth-oriented communication and dynamic service node selection have become increasingly prominent;thus,the efficiency and optimization quality of intelligent resource scheduling have become key factors influencing system performance.Traditional optimization algorithms encounter challenges such as limited encoding capability,cumbersome constraint handling,and slow convergence when addressing joint optimization problems involving multi-dimensional decision variables(e.g.,beams,power,and bandwidth).To address these issues,this paper proposes an improved particle swarm optimization algorithm(PPSO)based on a hybrid Stick-breaking encoding mechanism and GPU parallel acceleration,designed to efficiently solve intelligent resource allocation optimization problems in LEO constellation-based multi-beam satellite systems.The proposed method reconstructs the solution space of particles through hybrid Stick-breaking encoding,ensuring that normalized variables inherently satisfy global constraints,thereby eliminating complex constraint correction operations required in traditional methods.Furthermore,GPU-accelerated parallel computation is employed for particle swarm evolution and fitness evaluation,significantly improving algorithmic efficiency while preserving solution quality.Experimental results demonstrate that the proposed method outperforms existing approaches in optimizing key performance metrics,including total system delay,packet loss rate,and energy consumption,especially in large-scale constellation scenarios requiring dynamic Earth-oriented communication and dynamic node selection,exhibiting superior scalability and computational advantages.

关键词

低轨(LEO)星座/动态调度/图形处理器(GPU)加速/优化设计/粒子群算法(PSO)

Key words

low-Earth-orbit(LEO)constellation/dynamic scheduling/graphics processing unit(GPU)acceleration/optimization design/particle swarm optimization

分类

航空航天

引用本文复制引用

宋自阳,张廷尧,赵家庆,慕忠成,黄益新,付哲楷..基于GPU加速改进粒子群算法的多波束卫星通信资源优化[J].上海航天(中英文),2025,42(5):121-130,10.

基金项目

上海市自然科学基金面上资助项目(23ZR1432400) (23ZR1432400)

上海航天(中英文)

2096-8655

访问量0
|
下载量0
段落导航相关论文