| 注册
首页|期刊导航|水利学报|人工智能驱动水文预报与水库调度研究的探索与思考

人工智能驱动水文预报与水库调度研究的探索与思考

欧阳文宇 张弛 马昊然 叶磊 王泽 吕恒

水利学报2025,Vol.56Issue(9):1119-1131,13.
水利学报2025,Vol.56Issue(9):1119-1131,13.DOI:10.13243/j.cnki.slxb.20250049

人工智能驱动水文预报与水库调度研究的探索与思考

Exploration and consideration of AI-driven hydrological forecasting and reservoir operation

欧阳文宇 1张弛 1马昊然 1叶磊 2王泽 1吕恒1

作者信息

  • 1. 大连理工大学水利工程系,辽宁大连 116024
  • 2. 大连理工大学水利工程系,辽宁大连 116024||大连理工大学宁波研究院,浙江宁波 315016
  • 折叠

摘要

Abstract

The rapid development of artificial intelligence(AI)technology has brought new opportunities to hydro-logical forecasting and reservoir operation research.This paper focuses on the mining of watershed hydrological pro-cess regularities and the decision-making in reservoir flood control scheduling as entry points.It provides an overview of AI application case studies,analyzing the advantages of AI in identifying complex common patterns in watershed hydrology and in learning from real-world reservoir operation experiences to support future decision-making.Further-more,the paper discusses current challenges in AI applications,such as the insufficiency of data to describe common hydrological patterns and the inadequate digital representation of real-world conditions in scheduling.Based on this,a pathway for the collaborative development of data,algorithm and computing power is proposed to enhance data com-pleteness,strengthen algorithm capabilities,and promote practical engineering applications,highlighting the integra-tion of remote sensing big data with ground observation systems,the deep integration of domain knowledge with AI algorithms,and the research and application of platform-based software products.This aims to provide references for research and practice in related fields.

关键词

人工智能/水文预报/水库调度/算法/算力

Key words

artificial intelligence/hydrological forecasting/reservoir operation/algorithm/computing power

分类

建筑与水利

引用本文复制引用

欧阳文宇,张弛,马昊然,叶磊,王泽,吕恒..人工智能驱动水文预报与水库调度研究的探索与思考[J].水利学报,2025,56(9):1119-1131,13.

基金项目

国家杰出青年科学基金项目(51925902) (51925902)

国家自然科学基金项目(52322901,52309010) (52322901,52309010)

水利学报

OA北大核心

0559-9350

访问量0
|
下载量0
段落导航相关论文