| 注册
首页|期刊导航|现代信息科技|基于Vision Transformer的混合型晶圆图缺陷模式识别

基于Vision Transformer的混合型晶圆图缺陷模式识别

李攀 娄莉

现代信息科技2025,Vol.9Issue(19):26-30,5.
现代信息科技2025,Vol.9Issue(19):26-30,5.DOI:10.19850/j.cnki.2096-4706.2025.19.006

基于Vision Transformer的混合型晶圆图缺陷模式识别

Defect Pattern Recognition of Mixed Wafer Map Based on Vision Transformer

李攀 1娄莉1

作者信息

  • 1. 西安石油大学,陕西 西安 710065
  • 折叠

摘要

Abstract

Wafer testing is an important part of the chip production process.The identification and classification of wafer map defect patterns play a key role in improving the front-end manufacturing process.In the actual production process,various defects may appear at the same time,forming a mixed defect type.The traditional Deep Learning method has a low recognition rate for mixed wafer map defect information.Therefore,this paper proposes a defect recognition method based on Vision Transformer.This method uses the multi-head self-attention mechanism to encode the global features of the wafer map and realizes the efficient identification of mixed wafer defect maps.The experimental results on the mixed defect dataset show that the performance of this method is better than that of the existing Deep Learning model,and the average accuracy is 96.2%.

关键词

计算机视觉/晶圆图/缺陷识别/Vision Transformer

Key words

computer vision/wafer map/defect recognition/Vision Transformer

分类

信息技术与安全科学

引用本文复制引用

李攀,娄莉..基于Vision Transformer的混合型晶圆图缺陷模式识别[J].现代信息科技,2025,9(19):26-30,5.

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文