基于师生网络协同的动态阈值半监督学习图像分类研究OA
A Study on Dynamic Threshold Semi-supervised Learning Image Classification Based on Teacher-student Network Collaboration
半监督学习在图像处理中的应用一直受到广泛关注,其中基于一致性正则化和伪标签的方法,通过有效利用大量未标记数据提升了模型性能.然而,现有方法大多采用较高的固定阈值为无标签数据生成伪标签,导致未标记数据难以得到有效利用;且教师网络可能因性能波动对学生网络产生误导.针对上述问题,文章提出一种基于师生网络协同的动态阈值半监督学习图像分类方法MTDT(Mutual Teacher-Student Network with Dynamic Threshold for Semi-Supervised Image Classification).该方法仅在教师网络性能优于学生网络时,才由教师网络监督学生网络训练;同时根据模型学习状态,以自适应方式动态调整置信阈值.在CIFAR-10、STL-10、SVHN公开数据集上的实验结果表明,该方法具有更高的分类准确性.
The application of semi-supervised learning in image processing receives wide attention.Among them,the method based on consistency regularization and pseudo-label improves the performance of the model by effectively using a large amount of unlabeled data.However,most of the existing methods use high fixed thresholds to generate pseudo-labels for unlabeled data,which makes it difficult to effectively utilize unlabeled data.In addition,the teacher network may mislead the student network due to performance fluctuations.Aiming at the above problems,this paper proposes a dynamic threshold semi-supervised learning image classification method MTDT.This method only supervises student network training by teacher network when teacher network performance is better than student network.At the same time,according to the learning state of the model,the confidence threshold is dynamically adjusted in an adaptive manner.The experimental results on CIFAR-10,STL-10 and SVHN public datasets show that the proposed method has higher classification accuracy.
申辉繁;肖钦引
四川省计算机研究院,四川 成都 610041四川省计算机研究院,四川 成都 610041
信息技术与安全科学
阈值自适应伪标签半监督一致性正则化
adaptive thresholdpseudo-labelsemi-supervisedconsistency regularization
《现代信息科技》 2025 (20)
55-59,66,6
四川省科技计划项目(2023JDZH0007)
评论