| 注册
首页|期刊导航|新疆大学学报(自然科学版中英文)|SWLS:沙湾市遥感图像土地覆盖语义分割数据集

SWLS:沙湾市遥感图像土地覆盖语义分割数据集

卢毅果 钱育蓉 白璐 范迎迎 李志财 刘鹏

新疆大学学报(自然科学版中英文)2025,Vol.42Issue(4):434-443,10.
新疆大学学报(自然科学版中英文)2025,Vol.42Issue(4):434-443,10.DOI:10.13568/j.cnki.651094.651316.2024.12.29.0002

SWLS:沙湾市遥感图像土地覆盖语义分割数据集

SWLS:Dataset for Shawan City Land Cover Segmentation

卢毅果 1钱育蓉 2白璐 3范迎迎 3李志财 1刘鹏1

作者信息

  • 1. 新疆大学软件学院新疆大数据与智能软件工程研究中心,新疆乌鲁木齐 830091||新疆大学软件工程重点实验室,新疆乌鲁木齐 830091
  • 2. 新疆大学软件学院新疆大数据与智能软件工程研究中心,新疆乌鲁木齐 830091||新疆大学软件工程重点实验室,新疆乌鲁木齐 830091||新疆大学计算机科学与技术学院,新疆乌鲁木齐 830017||丝路多语言认知计算国际合作联合实验室,新疆乌鲁木齐 830017
  • 3. 新疆大学计算机科学与技术学院,新疆乌鲁木齐 830017||丝路多语言认知计算国际合作联合实验室,新疆乌鲁木齐 830017
  • 折叠

摘要

Abstract

In recent years,with the increasing accessibility of high-resolution domestic satellite data,the demand for interpreting remote sensing images in areas such as urban expansion monitoring,water resource management,and agricultural applications has grown significantly.Semantic segmentation of remote sensing images has gradually become one of the core techniques in this field.High-quality benchmark dataset is fundamental for training and evaluating semantic segmentation algorithms.However,existing land cover semantic segmentation datasets often lack near-infrared bands,have limited annotation precision and diversity,and do not include data specific to the unique geomorphology of Xinjiang of China,thereby limiting the effectiveness of models in practical applications in specific regions.To this end,the Shawan Land-cover Semantic Segmentation Dataset(SWLS)has been introduced.This dataset focuses on Shawan in Xinjiang and consists of high-resolution multispectral satellite remote sensing images acquired by the Gaofen-1(GF-1)satellite.It includes four bands:RGB and near-infrared,and features more detailed land cover annotations,particularly offering differentiated labeling for complex categories such as shelter forests and buildings.A comprehensive evaluation was conducted on the SWLS dataset using various classical Convolutional Neural Network(CNN)and Transformer-based semantic segmentation models.Among them,the best-performing CNN model achieved a maximum mean Intersection over Union(mIoU)of 87.46%,while the best Transformer-based model reached a maximum mIoU of 69.83%.

关键词

高分卫星/遥感图像/语义分割/数据集

Key words

Gaofen satellite/remote sensing images/semantic segmentation/dataset

分类

天文与地球科学

引用本文复制引用

卢毅果,钱育蓉,白璐,范迎迎,李志财,刘鹏..SWLS:沙湾市遥感图像土地覆盖语义分割数据集[J].新疆大学学报(自然科学版中英文),2025,42(4):434-443,10.

基金项目

新疆维吾尔自治区杰出青年科学基金"基于多时相协同变化检测的基本农田遥感监测研究"(2023D01E01) (2023D01E01)

国家自然科学基金"面向数字孪生农业的空-天-地多模态数据融合关键技术研究"(62266043) (62266043)

新疆维吾尔自治区青年拔尖人才项目"基于多源遥感大数据的粮食安全关键技术研究"(2023TSYCCX0043) (2023TSYCCX0043)

新疆维吾尔自治区天山创新团队项目"面向农业的天地协同水资源时空精准调度研究及应用"(2023D14012) (2023D14012)

新疆维吾尔自治区重点研发专项"边防异常信息多元感知与智能监测研究"(2023B01029-1,2023B01029-2) (2023B01029-1,2023B01029-2)

新疆维吾尔自治区自然科学基金"基于深度学习的多源数据融合技术在新疆棉田识别与产量预测中的应用研究"(2022D01B123) (2022D01B123)

国防科工局高分辨率对地观测系统重大专项"高分专项沙湾市乡村振兴产业化示范"(95-Y50G37-9001-22/23). (95-Y50G37-9001-22/23)

新疆大学学报(自然科学版中英文)

2096-7675

访问量0
|
下载量0
段落导航相关论文