| 注册
首页|期刊导航|液晶与显示|基于双因子分层约束的深度非负矩阵分解用于高光谱解混

基于双因子分层约束的深度非负矩阵分解用于高光谱解混

屈克文 罗小娟 保文星

液晶与显示2025,Vol.40Issue(10):1490-1508,19.
液晶与显示2025,Vol.40Issue(10):1490-1508,19.DOI:10.37188/CJLCD.2025-0122

基于双因子分层约束的深度非负矩阵分解用于高光谱解混

Deep nonnegative matrix factorization with dual-factor hierarchical constraints for hyperspectral unmixing

屈克文 1罗小娟 1保文星1

作者信息

  • 1. 北方民族大学 计算机科学与工程学院,宁夏 银川 750021
  • 折叠

摘要

Abstract

Hyperspectral unmixing(HU)is a key technology for addressing mixed pixels and characterizing land cover components.Although deep non-negative matrix factorization(DNMF)has shown excellent performance in HU,existing methods mostly focus on abundance modeling and neglect the multi-level feature extraction of endmembers,as well as their insufficient nonlinear representation capabilities,which limit the unmixing accuracy.To address these issues,this paper proposes a deep NMF framework for endmember hierarchical analysis,introducing inter-layer orthogonality constraints for endmember subspaces and dynamic sparse regularization for abundance refinement.Firstly,multi-level endmember decomposition is employed to enhance the nonlinear spectral feature representation.Secondly,a minimum distance guided subspace orthogonality mechanism is designed to improve the separability of endmembers,and it is coordinated with a dynamic weighted sparsity strategy to enhance the spatial consistency of abundance estimation.Finally,a two-stage hierarchical optimization algorithm is constructed,with pre-training for coarse initialization and cross-layer backpropagation for fine-tuning as the core.Experiments were conducted on two synthetic datasets and four real datasets.The results show that the SAD of the proposed method ranges from 0.004 2 to 0.078 2 and the RMSE ranges from 0.014 0 to 0.092 5 under different signal-to-noise ratios,outperforming the comparison methods by 1.42%to 5.64%and 1.87%to 6.48%respectively,verifying its accuracy and robustness.

关键词

高光谱解混/深度非负矩阵分解/端元判别/正交约束/分层稀疏正则化

Key words

hyperspectral unmixing/deep nonnegative matrix factorization/endmember discrimination/orthogonality constraints/hierarchical sparsity regularization

分类

信息技术与安全科学

引用本文复制引用

屈克文,罗小娟,保文星..基于双因子分层约束的深度非负矩阵分解用于高光谱解混[J].液晶与显示,2025,40(10):1490-1508,19.

基金项目

国家自然科学基金(No.62461001) (No.62461001)

宁夏自然科学基金(No.2024AAC02035) (No.2024AAC02035)

北方民族大学研究生创新项目(No.YCX24365)Supported by National Natural Science Foundation of China(No.62461001) (No.YCX24365)

Natural Science Foundation of Ningxia(No.2024AAC02035) (No.2024AAC02035)

Innovation Project for Postgraduates of North Minzu University(No.YCX24365) (No.YCX24365)

液晶与显示

OA北大核心

1007-2780

访问量0
|
下载量0
段落导航相关论文