| 注册
首页|期刊导航|液晶与显示|基于细节自适应和浅层引导的遥感影像道路提取

基于细节自适应和浅层引导的遥感影像道路提取

翟保明 邵攀 熊彪 漆琛崴 高玉倩 李净漪

液晶与显示2025,Vol.40Issue(10):1520-1531,12.
液晶与显示2025,Vol.40Issue(10):1520-1531,12.DOI:10.37188/CJLCD.2025-0131

基于细节自适应和浅层引导的遥感影像道路提取

Road extraction from remote sensing images based on shallow guidance and detail-adaptive

翟保明 1邵攀 1熊彪 1漆琛崴 1高玉倩 1李净漪2

作者信息

  • 1. 水电工程智能视觉监测湖北省重点实验室,湖北 宜昌 443002||三峡大学 计算机与信息学院,湖北 宜昌 443002
  • 2. 三峡大学 计算机与信息学院,湖北 宜昌 443002
  • 折叠

摘要

Abstract

To address two key challenges—namely,the multi-scale and multi-directional nature of roads and the frequent loss of fine-grained details,we propose a novel remote sensing road extraction network based on detail-adaptive and shallow feature guidance.Firstly,we design a shallow feature-guided attention module,which integrates strip convolutions,attention mechanisms,and shallow feature guidance to enhance the reconstruction of detailed information.Then,a multi-scale and multi-directional feature fusion module is developed,leveraging Gabor convolutions,local pooling,and global directional pooling to improve the representation of road features at various scales and directions.Finally,a detail-adaptive enhancement module is constructed using Gaussian filtering,interpolation,serpentine convolution,and standard convolution,which adaptively enhances the detailed information.The proposed network achieves F1-scores and IoU values of 74.62%and 62.38%on the CHN6-CUG dataset and 77.86%and 65.17%on the Massachusetts dataset,outperforming eight existing methods by at least 1.41%and 1.32%and 1.04%and 0.88%,respectively.Compared with other advanced methods,the proposed model demonstrates superior performance in road extraction tasks,maintaining high extraction accuracy while having a lower parameter count,showing a good balance between performance and efficiency.

关键词

遥感影像/道路提取/多尺度/注意力/多向卷积

Key words

remote sensing image/road extraction/multi-scale/attention/multi-directional convolution

分类

信息技术与安全科学

引用本文复制引用

翟保明,邵攀,熊彪,漆琛崴,高玉倩,李净漪..基于细节自适应和浅层引导的遥感影像道路提取[J].液晶与显示,2025,40(10):1520-1531,12.

基金项目

国家自然科学青年基金(No.41901341) (No.41901341)

湖北省自然科学基金面上项目(No.2024AFB867 ()

No.2024AFB217) ()

自然资源部地理国情监测重点实验室开放基金项目(No.2025NGCM03)Supported by National Natural Science Foundation of China(No.41901341) (No.2025NGCM03)

Natural Science Foundation of Hubei Province(No.2024AFB867 ()

No.2024AFB217) ()

Open Fund Project of the Key Laboratory of Geo-Environmental Monitoring,Ministry of Natural Resources(No.2025NGCM03) (No.2025NGCM03)

液晶与显示

OA北大核心

1007-2780

访问量0
|
下载量0
段落导航相关论文