| 注册
首页|期刊导航|液晶与显示|基于改进YOLO11的印刷电路板表面缺陷检测算法

基于改进YOLO11的印刷电路板表面缺陷检测算法

杨彦萍 高军伟 刘兆龙 邢荣鑫

液晶与显示2025,Vol.40Issue(10):1545-1556,12.
液晶与显示2025,Vol.40Issue(10):1545-1556,12.DOI:10.37188/CJLCD.2025-0137

基于改进YOLO11的印刷电路板表面缺陷检测算法

Surface defect detection on printed circuit boards based on improved YOLO11

杨彦萍 1高军伟 1刘兆龙 1邢荣鑫1

作者信息

  • 1. 青岛大学 自动化学院,山东 青岛 266071||山东省工业控制技术重点实验室,山东 青岛 266071
  • 折叠

摘要

Abstract

To address the challenges of low accuracy,false detections,and missed detections in PCB defect inspection under scenarios with small defect sizes,complex circuit backgrounds,and irregular defect shapes,this paper proposes a surface defect detection method based on an improved YOLOv11 architecture.First,a multi-scale convolutional attention(MSCA)mechanism is integrated into the backbone to enhance the model's sensitivity to subtle defects.Second,the neck structure is replaced with the high-level screening feature pyramid network(HS-FPN),which improves defect detection across sizes by using channel attention(CA)and selective feature fusion(SFF).Third,the original C3K2 module is enhanced by combining ConvFormer with a convolutional gated linear unit(CGLU),which improves feature representation while reducing computational cost.Furthermore,the unified-IoU(UIoU)loss function is applied to dynamically adjust the weighting of candidate boxes,enhancing both localization accuracy and convergence speed.Extensive experiments are conducted on a self-constructed PCB dataset with six defect categories.The proposed model achieves a mean average precision(mAP)of 89.1%,surpassing the baseline YOLOv11 by 5.3%in mAP.In addition,the precision and recall are improved by 2.3%and 6.1%,respectively,while the model's parameter count is reduced by 28.3%.The results demonstrate the effectiveness and practical potential of the proposed approach for real-world PCB defect detection tasks.

关键词

图像处理/PCB缺陷检测/YOLO11/多尺度卷积注意力机制/高效特征金字塔网络

Key words

image processing/PCB defect detection/YOLO11/multi-scale convolutional attention/HS-FPN

分类

信息技术与安全科学

引用本文复制引用

杨彦萍,高军伟,刘兆龙,邢荣鑫..基于改进YOLO11的印刷电路板表面缺陷检测算法[J].液晶与显示,2025,40(10):1545-1556,12.

基金项目

山东省自然科学基金(No.ZR2019MF063)Supported by Natural Science Foundation of Shandong Province(No.ZR2019MF063) (No.ZR2019MF063)

液晶与显示

OA北大核心

1007-2780

访问量0
|
下载量0
段落导航相关论文