| 注册
首页|期刊导航|云南民族大学学报(自然科学版)|基于BERT-MABL模型的客户评论情感分析研究

基于BERT-MABL模型的客户评论情感分析研究

金书丞 王嘉梅

云南民族大学学报(自然科学版)2025,Vol.34Issue(5):582-589,8.
云南民族大学学报(自然科学版)2025,Vol.34Issue(5):582-589,8.DOI:10.3969/j.issn.1672-8513.2025.05.011

基于BERT-MABL模型的客户评论情感分析研究

Research on sentiment analysis for customer reviews based on the BERT-MABL model

金书丞 1王嘉梅1

作者信息

  • 1. 云南民族大学 电气信息工程学院,云南 昆明 650504
  • 折叠

摘要

Abstract

The advancement of Internet technology has led to the rapid rise of e-commerce platforms.In order to accurately analyze the sentiment orientation of customer reviews on these platforms,a text sentiment analysis method based on the BERT-MABL model is proposed.Traditional sentiment analysis models face challenges such as the inability to incorporate contextual semantic information,difficulty in resolving word ambiguity,and the lack of assigning sentiment weights to vocabulary.The proposed method first utilizes BERT to extract word embeddings that capture deep semantic information.To enable the model to learn contextual semantics,the Bi-LSTM model is employed as the backbone.Additionally,the MABL model is constructed by introducing a multi-head attention mechanism to address the issue of sentiment weight allocation that Bi-LSTM cannot handle.This allows the model to focus on text information from multiple perspectives.Experimental results demonstrate that the customer review sentiment analysis method based on the BERT-MABL model achieves significant improvements over traditional models.With a multi-head count of 8 and a Dropout rate of 0.3,the accuracy of the BERT-MABL model on three datasets reaches 89.28%,90.20%,and 90.85%,respectively.The corresponding F1 scores are 87.16%,89.04%,and 88.24%.

关键词

情感分析/BERT/词向量/Bi-LSTM/多头注意力机制

Key words

sentiment analysis/BERT/word embedding/Bi-LSTM/multi-head attention mechanism

分类

信息技术与安全科学

引用本文复制引用

金书丞,王嘉梅..基于BERT-MABL模型的客户评论情感分析研究[J].云南民族大学学报(自然科学版),2025,34(5):582-589,8.

基金项目

云南省自然科学基金(202201AT070377). (202201AT070377)

云南民族大学学报(自然科学版)

1672-8513

访问量4
|
下载量0
段落导航相关论文