| 注册
首页|期刊导航|中国电力|分布式强化学习驱动的微电网群动态能量优化管理策略

分布式强化学习驱动的微电网群动态能量优化管理策略

柳华 熊再豹 蒋陶宁 高宇 金雨含 葛磊蛟

中国电力2025,Vol.58Issue(10):50-62,13.
中国电力2025,Vol.58Issue(10):50-62,13.DOI:10.11930/j.issn.1004-9649.202503064

分布式强化学习驱动的微电网群动态能量优化管理策略

Distributed Reinforcement Learning-Driven Dynamic Energy Optimization Management Strategy for Microgrid Clusters

柳华 1熊再豹 1蒋陶宁 1高宇 1金雨含 2葛磊蛟2

作者信息

  • 1. 国核电力规划设计研究院有限公司,北京 100095
  • 2. 天津大学电气自动化与信息工程学院,天津 300072
  • 折叠

摘要

Abstract

With the growth of global energy demand and the advancement of sustainable development goals,energy management of microgrids,as an important means to address energy supply,improve energy efficiency and promote green energy utilization,is faced with high dimensionality,complexity and dynamic challenges.In this paper,we propose a distributed reinforcement learning-driven energy optimization and management strategy for microgrid clusters,aiming to enhance the efficiency and sustainability of microgrid clusters in energy scheduling and management through intelligent means.Aiming at the challenges of the microgrid cluster,such as large dynamic changes in load and complex topology,adaptive decision-making and collaborative optimization of the microgrid cluster in a distributed environment is achieved by constructing an objective optimization function and introducing a distributed reinforcement learning algorithm;and power generation of the microgrid cluster is achieved by treating each power point in the microgrid as an agent and utilizing information sharing to achieve the maximization of the global benefit and minimization of the power generation cost,storage and load demand management;finally,the results of the real case show that the proposed strategy is able to maintain the dynamic balance between power supply and demand,resulting in a saving of about 18%of the total power generation cost compared to the traditional methodology techniques.

关键词

分布式强化学习/动态能量管理/微电网群/动态平衡/智能体

Key words

distributed reinforcement learning/dynamic energy management/microgrid clusters/dynamic balancing/agent

引用本文复制引用

柳华,熊再豹,蒋陶宁,高宇,金雨含,葛磊蛟..分布式强化学习驱动的微电网群动态能量优化管理策略[J].中国电力,2025,58(10):50-62,13.

基金项目

新一代人工智能国家科技重大专项(2022ZD0116900). This work is supported by National Science and Technology Major Project(No.2022ZD0116900). (2022ZD0116900)

中国电力

OA北大核心

1004-9649

访问量0
|
下载量0
段落导航相关论文