| 注册
首页|期刊导航|中国空间科学技术(中英文)|基于物理约束的分子光谱预测深度模型

基于物理约束的分子光谱预测深度模型

高宝全 全冬晖 胡建萍 潘怡君

中国空间科学技术(中英文)2025,Vol.45Issue(5):14-21,8.
中国空间科学技术(中英文)2025,Vol.45Issue(5):14-21,8.DOI:10.16708/j.cnki.1000-758X.2025.0072

基于物理约束的分子光谱预测深度模型

Physics-informed deep learning for molecular spectrum

高宝全 1全冬晖 1胡建萍 2潘怡君1

作者信息

  • 1. 之江实验室,天文计算研究中心,杭州 311100
  • 2. 西安交通大学,物理学院,西安 710049||南京大学,天文与空间科学学院,南京 210093
  • 折叠

摘要

Abstract

Accurate modeling of mid-infrared vibrational-rotational transition spectra is pivotal for detecting biosignatures and prebiotic molecules in exoplanetary atmospheres.Conventional line-by-line radiative transfer methods encounter prohibitive computational costs when generating high-resolution spectra across extensive parameter spaces,particularly limiting real-time atmospheric retrieval and large-scale exoplanet surveys.To address these challenges,a physics-informed deep learning framework was developed for rapid and precise spectral generation.The architecture incorporates three key components:A parameter-encoding layer establishing global correlations between temperature-pressure conditions and spectral line parameters;Multi-head self-attention mechanisms capturing long-range dependencies in vibrational-rotational features;A physics-constrained decoder incorporating residual modules derived from line profile equations to minimize non-physical deviations.The framework demonstrated successful reconstruction of molecular absorption cross-sections from the HITRAN database at 0.01cm-1 resolution,achieving a 100×acceleration compared to conventional HAPI simulations while maintaining spectral fidelity.The framework accurately preserved fundamental spectroscopic principles,including line intensity scaling and rotational temperature dependencies,across diverse atmospheric conditions.This approach represents the first integration of spectroscopic constraints into neural network-based spectral generation,enabling interpretable temperature-pressure-spectral correlations and compatibility with photochemical network-driven biosignature assessments.The method now provides a computationally efficient solution for next-generation spectral databases,significantly advancing molecular characterization of exoplanetary environments and enhancing biosignature detection systems through photochemical network integration.

关键词

系外行星/中红外波段/深度学习/物理神经网络/光谱

Key words

exoplanets/mid-infrared/deep Learning/physics-based neural network/spectra

分类

天文与地球科学

引用本文复制引用

高宝全,全冬晖,胡建萍,潘怡君..基于物理约束的分子光谱预测深度模型[J].中国空间科学技术(中英文),2025,45(5):14-21,8.

基金项目

星际介质中核酸碱基前体相关分子的形成与消耗机制建模研究(117005-CA2313) (117005-CA2313)

国家自然科学基金(12373026) (12373026)

浙江省创新团队项目(2023R01008 ()

浙江省尖兵领雁项目(2024SSYS0012) (2024SSYS0012)

中国空间科学技术(中英文)

OA北大核心

1000-758X

访问量0
|
下载量0
段落导航相关论文