| 注册
首页|期刊导航|中国空间科学技术(中英文)|知识约束的天体化学反应预测深度模型

知识约束的天体化学反应预测深度模型

张亚楠 杨培伦 王佳玮 卜海丽 段曼妮 全冬晖

中国空间科学技术(中英文)2025,Vol.45Issue(5):22-32,11.
中国空间科学技术(中英文)2025,Vol.45Issue(5):22-32,11.DOI:10.16708/j.cnki.1000-758X.2025.0073

知识约束的天体化学反应预测深度模型

Knowledge-constrained deep learning model for predicting astrochemical reactions

张亚楠 1杨培伦 1王佳玮 1卜海丽 1段曼妮 1全冬晖1

作者信息

  • 1. 之江实验室 天文计算研究中心,杭州 311100
  • 折叠

摘要

Abstract

In astrochemical research,analyzing the evolutionary processes of species within astrophysical regions requires reconstructing their reaction pathways under dynamic physical conditions.This process heavily relies on an accurate and comprehensive astrochemical reaction network.Traditional methods for constructing such networks primarily depend on expert knowledge and experimental validation to identify chemical reactions between species,which entails high time and computational costs.In this context,a deep learning-based predictive method named GraSSCoL-2 is proposed to enable efficient prediction of astrochemical reactions,thereby accelerating the analysis of species evolution.GraSSCoL-2 incorporates a graph encoder,a sequence decoder,and contrastive learning techniques.Trained on existing reaction data,it can effectively predict both forward and reverse reaction pathways among astrochemical species.Evaluated on Chemiverse,a state-of-the-art astrochemical reaction dataset,GraSSCoL-2 achieves Top-1,Top-3,Top-5 and Top-10 accuracies of 81.8%,91.3%,92.9%and 93.4%,respectively,for forward reaction prediction,representing relative improvements of 3.5%,3.6%,2.9%and 2.5%.For reverse reaction prediction,the corresponding accuracies are 76.2%,87.6%,89.9%and 90.5%,with relative gains of 1.9%,1.8%,1.8%and 1.2%.Furthermore,experimental results indicate that the combined application of SMILES augmentation and hydrogenation strategies significantly enhances prediction accuracy.Additionally,the proportion of invalid SMILES generated in forward and reverse reaction prediction tasks is 3.0%and 3.9%,respectively,a substantial reduction from 14.2%and 14.6%observed with GraSSCoL.These findings demonstrate that GraSSCoL-2 not only ensures high prediction accuracy but also significantly improves the validity of generated results,further validating its reliability and applicability in astrochemical reaction prediction tasks.

关键词

生命分子/物种演化/反应预测/数据增强/守恒定律/图编码器/对比学习

Key words

biomolecules/species evolution/reaction prediction/data augmentation/conservation laws/graph encoder/contrastive learning

分类

天文与地球科学

引用本文复制引用

张亚楠,杨培伦,王佳玮,卜海丽,段曼妮,全冬晖..知识约束的天体化学反应预测深度模型[J].中国空间科学技术(中英文),2025,45(5):22-32,11.

基金项目

国家自然科学基金(12373026) (12373026)

浙江省创新团队项目(2023R01008) (2023R01008)

浙江省尖兵领雁项目(2024SSYS0012) (2024SSYS0012)

中国空间科学技术(中英文)

OA北大核心

1000-758X

访问量0
|
下载量0
段落导航相关论文