| 注册
首页|期刊导航|制冷技术|基于神经网络的微纳颗粒辐射制冷器反射率预测

基于神经网络的微纳颗粒辐射制冷器反射率预测

刘乐洋 宋锡昊 张鹏

制冷技术2025,Vol.45Issue(4):1-6,15,7.
制冷技术2025,Vol.45Issue(4):1-6,15,7.DOI:10.3969/j.issn.2095-4468.2025.04.101

基于神经网络的微纳颗粒辐射制冷器反射率预测

Prediction of Reflectivity for Radiative Coolers with Micro/Nano Particles Based on Artificial Neural Networks

刘乐洋 1宋锡昊 1张鹏1

作者信息

  • 1. 上海交通大学制冷与低温工程研究所,上海 200240
  • 折叠

摘要

Abstract

To address the issues of high computational cost and resource consumption in numerically predicting the spectral properties of radiative coolers,a method based on artificial neural network is proposed to predict the reflectivity of radiative coolers containing micro/nano particles.The proposed model demonstrates strong generalization capabilities for predicting radiative coolers with various materials and structural parameters.The influence of structural parameters on spectral reflectivity is investigated using this prediction model.The results indicate that increasing the thickness and volume fraction enhances the reflectivity of radiative coolers in the solar radiation spectrum band.Within the range of 0.1-0.5 μm,an increase in particle radius improves the spectral reflectivity in the solar radiation band,but it decreases when the particle radius exceeds 0.5 μm.Based on this law,parameter inverse optimization design is conducted for the spectral reflectivity of an ideal broadband radiative cooler,the calculated average reflectivity of the radiative cooler can reach 0.96 in the range of 0.25-2.5 μm.

关键词

辐射制冷/人工神经网络/光谱反射特性

Key words

Radiative cooling/Artificial neural network/Spectral reflection characteristics

分类

通用工业技术

引用本文复制引用

刘乐洋,宋锡昊,张鹏..基于神经网络的微纳颗粒辐射制冷器反射率预测[J].制冷技术,2025,45(4):1-6,15,7.

制冷技术

2095-4468

访问量0
|
下载量0
段落导航相关论文