| 注册
首页|期刊导航|制冷技术|数据受限条件下的商业建筑制冷空调系统负荷预测研究

数据受限条件下的商业建筑制冷空调系统负荷预测研究

樊超 张鉴心 陈焕新 黎强 肖准

制冷技术2025,Vol.45Issue(4):52-59,8.
制冷技术2025,Vol.45Issue(4):52-59,8.DOI:10.3969/j.issn.2095-4468.2025.04.203

数据受限条件下的商业建筑制冷空调系统负荷预测研究

Research on Load Forecasting of Commercial Building Refrigeration and Air Conditioning System under Data Limitation

樊超 1张鉴心 1陈焕新 1黎强 2肖准2

作者信息

  • 1. 华中科技大学能源与动力工程学院,湖北 武汉 430074
  • 2. 武汉所为科技有限公司,湖北 武汉 430223
  • 折叠

摘要

Abstract

In order to study the load forecasting of refrigeration and air conditioning system of commercial buildings under the condition that the original data collection is limited,different data are divided into three basic feature groups:cold station data,meteorological data and indoor data.Seven load prediction models are constructed through the combination of basic feature groups,and the model prediction results are quantitatively evaluated.The results show that when a single feature set is used as the model input,the prediction effect of cold station data is the best.In all models,when all features are taken as input,the prediction effect is the best:root mean square error is 3.03 and goodness of fit R2 is 0.87.The quantitative evaluation of the prediction results under different feature combinations is carried out to provide some help for the feature selection of load prediction data end and the collection of original data.

关键词

商业建筑制冷系统/负荷预测/神经网络/特征分析

Key words

Commercial building refrigeration system/Load forecasting/Neural network/Feature analysis

分类

信息技术与安全科学

引用本文复制引用

樊超,张鉴心,陈焕新,黎强,肖准..数据受限条件下的商业建筑制冷空调系统负荷预测研究[J].制冷技术,2025,45(4):52-59,8.

基金项目

国家自然科学基金(No.51876070). (No.51876070)

制冷技术

2095-4468

访问量0
|
下载量0
段落导航相关论文