| 注册
首页|期刊导航|Journal of Automation and Intelligence|Densely-connected Decoder Transformer for unsupervised anomaly detection of power electronic systems

Densely-connected Decoder Transformer for unsupervised anomaly detection of power electronic systems

Zhichen Zhang Gen Qiu Yuhua Cheng Min Wang

Journal of Automation and Intelligence2025,Vol.4Issue(3):P.217-226,10.
Journal of Automation and Intelligence2025,Vol.4Issue(3):P.217-226,10.DOI:10.1016/j.jai.2025.05.002

Densely-connected Decoder Transformer for unsupervised anomaly detection of power electronic systems

Zhichen Zhang 1Gen Qiu 1Yuhua Cheng 1Min Wang1

作者信息

  • 1. School of Automation,University of Electronic Science and Technology of China,Chengdu,611731,China
  • 折叠

摘要

关键词

Power electronic systems/Anomaly detection/Transformer network/Dense connection/Unsupervised learning/DDformer

分类

信息技术与安全科学

引用本文复制引用

Zhichen Zhang,Gen Qiu,Yuhua Cheng,Min Wang..Densely-connected Decoder Transformer for unsupervised anomaly detection of power electronic systems[J].Journal of Automation and Intelligence,2025,4(3):P.217-226,10.

基金项目

supported in part by the National Natural Science Foundation of China under Grant 62303090,U2330206 ()

in part by the Postdoctoral Science Foundation of China under Grant 2023M740516 ()

in part by the Natural Science Foundation of Sichuan Province under Grant 2024NSFSC1480 ()

in part by the New Cornerstone Science Foundation through the XPLORER PRIZE. ()

Journal of Automation and Intelligence

2097-504X

访问量0
|
下载量0
段落导航相关论文