基于机器学习的榍石微量元素特征判别岩浆岩类型OA北大核心
Machine-learning-based classification of igneous rock type using titanite trace element data
榍石作为岩浆岩中常见的副矿物,其矿物地球化学成分能够较为详细地记录岩浆演化过程,尤其是榍石的微量元素特征在寄主岩石的类型判别指示中具有重要潜力.传统的二元判别图虽然在利用榍石微量元素含量的判别中有所应用,但其在复杂岩石类型分类中的局限性也日益显现.近年来,随着地质数据的积累和机器学习技术的发展,大数据分析在地质学中得到广泛应用.利用全球公开的榍石微量元素数据库GEOROC汇编了 8 721条岩浆岩中榍石微量元素数据,采用遗传编程符号回归方法构建了利用榍石成分判别岩浆岩岩性的数学表达式.通过 4种机器学习算法(支持向量机、K最近邻、XGBoost和随机森林),建立了基于榍石微量元素的岩浆岩岩性分类模型,准确判别出超基性岩、基性岩、中性岩和酸性岩.利用SHAP分析揭示了榍石微量元素与岩浆岩类型之间的显著关联,表明榍石微量元素组合可以作为有效指标用于岩浆岩类型识别.
Titanite,as an accessory mineral in igneous rocks,provides a record of the evolution of geochemical environments during magma differentiation,and its trace element characteristics hold significant potential in rock type identification.Although binary discrimination plots have been applied in traditional classifications of igneous rocks based on titanite trace element content,their limitations in classifying complex rock types have become increasingly evident.In recent years,with the accumulation of geological data and the development of machine-learning technologies,data-driven geological research methods have been widely applied.This study utilized publicly available titanite trace element data and employed genetic programming symbolic regression to construct a mathematical expression for discriminating igneous rock type.By applying four machine-learning algorithms(support vector machine,k-nearest neighbors,XGBoost,and random forest),a classification model for igneous rock type was constructed,which accurately distinguishes ultramafic,mafic,intermediate,and felsic rocks.SHAP analysis revealed significant associations between titanite trace element compositions and igneous rock types,indicating that titanite geochemistry can serve as an effective indicator for lithological classification.
滕文航;潘增锋;王瑞
中国地质大学(北京)地质过程与成矿预测全国重点实验室,北京 100083中国地质大学(北京)地球科学与资源学院,北京 100083中国地质大学(北京)地质过程与成矿预测全国重点实验室,北京 100083
天文与地球科学
榍石微量元素岩浆岩遗传编程符号回归机器学习
titanitetrace elementsigneous rocksgenetic programming symbolic regressionmachine learning
《成都理工大学学报(自然科学版)》 2025 (5)
873-887,15
国家自然科学基金重大研究计划集成项目(92462304)中国地质大学(北京)2025年大学生创新创业训练计划项目资助.
评论