首页|期刊导航|成都理工大学学报(自然科学版)|基于机器学习的川中地区雷口坡组三段二亚段泥质灰岩储层分布预测

基于机器学习的川中地区雷口坡组三段二亚段泥质灰岩储层分布预测OA北大核心

Prediction of the distribution of marly limestone reservoirs in the second sub-member of the third member of the Leikoupo Formation,central Sichuan Basin,based on machine learning

中文摘要英文摘要

四川盆地中部CT1井雷口坡组三段二亚段(简称雷三2 亚段)泥质灰岩储层在近期取得工业性气流,显示出良好的勘探前景.目前对泥质灰岩储层的测井响应机制与预测模型的研究较为薄弱.通过川中地区雷三2 亚段的岩心描述、薄片观察与测井响应特征总结,建立了基于测井数据的长短期记忆网络(LSTM)的机器学习模型;对泥质灰岩进行岩性识别,结合单因素矿物含量分析及沉积相特征,实现泥质灰岩储层"点-线-面"多元综合预测.研究结果表明,雷三2 亚段以灰岩、泥质灰岩、白云岩及膏盐岩为主,泥质灰岩储层储集空间以纳米-微米级的孔隙和微裂缝为主,为典型的低孔低渗型储层,储层厚度 40~130 m.对比CIFLog软件计算结果和镜下薄片鉴定结果,LSTM模型预测结果的精确度达到(87.3±0.5)%.预测结果显示,泥质灰岩储层主要分布在西充、南充及仪陇地区,厚80~120 m,呈"中厚边薄"的特征,为优势勘探区;中江、资阳、安岳及合川地区储层厚度 60~80 m,为潜在勘探区.本次研究为川中地区雷三2 亚段泥质灰岩储层的油气勘探提供参考.

Recently,an industrial gas flow has been obtained from the second sub-member of the third member of the Leikoupo Formation(Lei32)at Well CT1 in the central Sichuan Basin,indicating favorable exploration prospects for marly limestone reservoirs.However,research on well-logging response mechanisms and predictive modeling for such reservoirs remains limited.This study integrates core descriptions,thin-section petrography,and a well-log response analysis to characterize the lithological features of the Lei32 sub-member.A long short-term memory(LSTM)machine learning model was established using well-log data for lithofacies identification of marly limestone.By integrating a single-factor mineral content analysis and sedimentary facies characteristics,a multi-scale predictive framework(point-line-surface)was constructed to forecast marly limestone reservoirs.The results show that the Lei32 sub-member is primarily composed of limestone,marly limestone,dolomite,and gypsum salt rocks.The marly limestone reservoir is characterized by nanoscale to micrometer-scale pores and microfractures,indicating a typical low-porosity,low-permeability system,with reservoir thickness ranging from 40 to 130 m.Compared with CIFLog software calculations and petrographic identifications,the LSTM model achieved a prediction accuracy of(87.3±0.5)%.Spatial prediction results indicate that the reservoir's thickness ranges from 80 to 120 m in the Xichong,Nanchong,and Yilong areas,which are favorable for exploration.In contrast,Zhongjiang,Ziyang,Anyue,and Hechuan exhibit reservoir thicknesses of 60 to 80 m,suggesting potential exploration targets.This study provides useful a reference for the hydrocarbon exploration of marly limestone reservoirs in the Lei32 sub-member of the central Sichuan Basin.

任杉;杨绍海;闫春桥;金鑫;郭嘉欣;刘树根;宋金民;李柯然;杨迪;叶玥豪;李泽奇;王斌;邵兴鹏;周佳庆

油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059||西华大学,成都 610039油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059

天文与地球科学

川中地区雷三2 亚段泥质灰岩储层机器学习预测模型

central Sichuan areaLei32marly limestone reservoirmachine learningprediction model

《成都理工大学学报(自然科学版)》 2025 (5)

914-930,17

国家科技重大专项(2025ZD1400403)国家自然科学基金面上项目(42572132,41872150).

10.12474/cdlgzrkx.2025072901

评论