首页|期刊导航|成都理工大学学报(自然科学版)|多源数据与地质逻辑融合的深层页岩储层构造裂缝测井智能识别

多源数据与地质逻辑融合的深层页岩储层构造裂缝测井智能识别OA北大核心

Intelligent logging identification of structural fractures in deep shale reservoirs based on the fusion of multisource data and geological logic

中文摘要英文摘要

深层页岩储层构造裂缝对页岩气富集高产控制作用明显,其准确识别对页岩气高效勘探开发具有重要指导意义.基于川东南龙马溪组页岩气藏钻井、录井、测井、生产等全链条数据,采用机器学习驱动与裂缝响应信息相融合的方法,查明了多源数据对天然裂缝的响应特征,构建了构造裂缝发育特征的智能识别模型,形成了构造裂缝网络有效性测井定量评价方法.结果表明:川东南龙马溪组页岩发育 4类构造裂缝,以高角度-垂直的张性缝和剪切缝为主.当富有机质页岩和含有机质页岩岩心裂缝密度分别在 12 条/米和 8 条/米以上时,钻时与气测响应更加明显.采用测井交会图法和皮尔逊相关系数分析法,认为声波时差、中子孔隙度、深浅双侧向电阻率比、纵波、横波及斯通利波等对页岩储层构造裂缝规模和产状响应更加敏感.通过优选表格数据深度学习网络架构模型,分别实现了富有机质页岩构造裂缝规模与产状识别精度在 93%和 80%以上,且龙一段下部高角度-垂直张性缝和剪切缝识别效果最好.考虑裂缝几何参数与物性参数,建立了裂缝网络有效性的定量评价指数,认为裂缝网络有效性越好,页岩气富集程度相对更高,经改造后越易形成复杂缝网.该成果可进一步推动深层页岩储层甜点精细评价和压裂改造优化设计.

Structural fractures in deep shale reservoirs exert obvious controlling effects on shale gas enrichment and gas production.Their accurate identification holds important guiding significance for the development,and subsequent exploration,of shale gas.In this paper,based on drilling,logging,well-logging,and production data of shale gas in the Longmaxi Formation in southeastern Sichuan Basin,the response characteristics of multisource data to natural fractures are identified via a combination of machine learning and fracture response information.An intelligent identification model of structural fractures,including their developmental characteristics,is constructed,and a quantitative well-logging evaluation method for assessing the effectiveness of structural fracture networks was developed.The results show that four types of structural fractures have developed in the shale of the Longmaxi Formation,which are dominated by high-angle,vertical,tensile fractures and shear fractures.When the core fracture density exceeds 12 pieces per meter in organic-rich shale and eight pieces per meter in organic-bearing shale,the drilling time and gas logging responses become more pronounced.Cross-plot analysis and Pearson correlation coefficient analysis indicated that the acoustic transit time,neutron porosity,deep-to-shallow laterolog resistivity ratio,compressional waves,shear waves,and Stoneley waves exhibit high sensitivity to the density and dip of structural fractures in the shale reservoir.By optimizing a tabular data,deep learning architecture model called TabNet,we achieved identification accuracies exceeding 93%for identifying the fracture scale and 80%for fracture occurrence within organic-rich shale.Compared with other approaches,the model presented here demonstrates the best performance in identifying high-angle,vertical tensile and shear fractures within the lower part of the first member of the Longmaxi Formation.Considering the fractures'geometric parameters and petrophysical properties,a quantitative evaluation index for fracture network effectiveness was established.It is considered that the better the effectiveness of the fracture network,the higher the enrichment degree of shale gas,and the easier it is to form complex fracture networks after transformation.These results can further promote the fine evaluation of deep shale reservoir deposits and the optimization design of fracturing transformation.

徐碧兰;王濡岳;何建华;吴炎峰;李丹;曹峰;蒋睿;李勇;李可赛;邓虎成

成都理工大学 能源学院(页岩气现代产业学院),成都 610059成都理工大学 能源学院(页岩气现代产业学院),成都 610059||页岩油气富集机理与高效开发全国重点实验室,北京 102206||中国石油化工股份有限公司 石油勘探开发研究院,北京 102206成都理工大学 能源学院(页岩气现代产业学院),成都 610059||页岩油气富集机理与高效开发全国重点实验室,北京 102206成都理工大学 能源学院(页岩气现代产业学院),成都 610059成都理工大学 能源学院(页岩气现代产业学院),成都 610059成都理工大学 能源学院(页岩气现代产业学院),成都 610059成都理工大学 能源学院(页岩气现代产业学院),成都 610059大庆油田有限责任公司 勘探开发研究院,黑龙江 大庆 163712成都理工大学 能源学院(页岩气现代产业学院),成都 610059油气藏地质及开发工程全国重点实验室(成都理工大学),成都 610059

能源科技

构造裂缝测井识别智能算法深层页岩储层龙马溪组川东南

structural fractureslogging identificationintelligent algorithmdeep shale reservoirLongmaxi Formationsoutheastern Sichuan Basin

《成都理工大学学报(自然科学版)》 2025 (5)

931-950,20

国家自然科学基金青年基金项目(42402148)页岩油气富集机理与高效开发全国重点实验室开发基金项目(ZC0699)宁夏回族自治区非常规天然气勘查开发创新团队科研项目(2022BSB03105)宁夏回族自治区重点研发计划项目(2025BEGD2022).

10.12474/cdlgzrkx.2025012401

评论