| 注册
首页|期刊导航|传感技术学报|一种基于多源信息融合的跌倒检测研究

一种基于多源信息融合的跌倒检测研究

方堃 潘巨龙 项睿涵 李玲艺

传感技术学报2025,Vol.38Issue(9):1597-1605,9.
传感技术学报2025,Vol.38Issue(9):1597-1605,9.DOI:10.3969/j.issn.1004-1699.2025.09.008

一种基于多源信息融合的跌倒检测研究

Research on Fall Detection Based on Multi-Source Information Fusion

方堃 1潘巨龙 1项睿涵 1李玲艺1

作者信息

  • 1. 中国计量大学信息工程学院,浙江 杭州 310018
  • 折叠

摘要

Abstract

Single information source is usually used in the traditional fall detection method,which leads to problems such as low detec-tion accuracy,weak algorithm robustness,and poor stability in the process of practical application.A fall detection method based on in-ertial sensor data and sound data is proposed.The method is targeted at wearable devices,it adopts high-performance lightweight neural networks(Ghost-InertialNet,Ghost-SoundNet)and information fusion for fall detection.In this algorithm,the primary detection method is based on inertial sensor(accelerometer,gyroscope)data,while the method based on fall sound data is used as an auxiliary means.The experimental results show that the algorithm achieves satisfactory detection accuracy and has a small number of model parameters,which meets the requirements for deployment on resource-constrained wearable devices.Meanwhile,incorporating the sound model gives the overall algorithm higher accuracy and reliability compared to the single information source approach.

关键词

跌倒检测/多源信息融合/惯性传感器数据/声音数据/加权平均法

Key words

fall detection/multi-source fusion/inertial sensor data/sound data/weighted average method

分类

信息技术与安全科学

引用本文复制引用

方堃,潘巨龙,项睿涵,李玲艺..一种基于多源信息融合的跌倒检测研究[J].传感技术学报,2025,38(9):1597-1605,9.

基金项目

浙江省基础公益研究计划项目(LGF21F020017) (LGF21F020017)

传感技术学报

OA北大核心

1004-1699

访问量0
|
下载量0
段落导航相关论文