| 注册
首页|期刊导航|测控技术|基于优化CNN模型的新能源汽车制动系统机械故障诊断

基于优化CNN模型的新能源汽车制动系统机械故障诊断

温志力 张忠其

测控技术2025,Vol.44Issue(10):61-66,6.
测控技术2025,Vol.44Issue(10):61-66,6.DOI:10.19708/j.ckjs.2025.10.003

基于优化CNN模型的新能源汽车制动系统机械故障诊断

Mechanical Fault Diagnosis of New Energy Vehicle Braking System Based on Optimized CNN Model

温志力 1张忠其2

作者信息

  • 1. 广西物流职业技术学院物流交通学院,广西贵港 537100
  • 2. 广西工业职业技术学院汽车工程学院,广西南宁 530001
  • 折叠

摘要

Abstract

As a key safety component,the fault diagnosis of new energy vehicle braking system is of great sig-nificance for improving driving safety and system reliability.Traditional mechanical diagnosis methods are limit-ed by low precision and high time consumption,and it is difficult to meet the needs of complex fault scenarios in new energy vehicles.Therefore,a fault diagnosis model based on optimized convolutional neural network(CNN)is designed.The spatial and temporal features of the input signal are extracted by incorporating CNN and bidirectional gated recurrent units,and inter-channel attention mechanisms is used to optimize feature weight assignment.The experimental results show that the model performs well in the classification tasks of 6 typical brake faults,with accuracy of 98.7%,mean squared error of 0.02,and diagnosis time controlled within 1.2s.The results show that the proposed model effectively improves the diagnostic performance and efficiency,and is suitable for complex fault scenarios.

关键词

新能源汽车/制动系统/故障诊断/卷积神经网络/门控循环单元

Key words

new energy vehicle/braking system/fault diagnosis/CNN/GRU

分类

交通工程

引用本文复制引用

温志力,张忠其..基于优化CNN模型的新能源汽车制动系统机械故障诊断[J].测控技术,2025,44(10):61-66,6.

基金项目

广西教育科学"十四五"规划2024年度专项课题(2024ZJY394) (2024ZJY394)

测控技术

1000-8829

访问量0
|
下载量0
段落导航相关论文