| 注册
首页|期刊导航|中北大学学报(自然科学版)|基于多注意力特征融合的SAR图像目标分类算法

基于多注意力特征融合的SAR图像目标分类算法

许丽龙 王春柳 侯宇超 王鹏

中北大学学报(自然科学版)2025,Vol.46Issue(5):561-573,13.
中北大学学报(自然科学版)2025,Vol.46Issue(5):561-573,13.DOI:10.62756/jnuc.issn.1673-3193.2025.03.0012

基于多注意力特征融合的SAR图像目标分类算法

Target Classification Algorithm for SAR Images Based on Multi-Attention Feature Fusion

许丽龙 1王春柳 1侯宇超 2王鹏1

作者信息

  • 1. 中北大学 数学学院,山西 太原 030051
  • 2. 山西师范大学 数学与计算机科学学院,山西 太原 030031
  • 折叠

摘要

Abstract

A novel classification model for SAR image target classification,named Multi-Attention Feature Fusion Network(MAFNet)was proposed.Firstly,a multi-head self-attention mechanism was applied to the original image to capture global information.Secondly,a covariance attention mechanism was introduced to further enhance the representation of channel and spatial features.Thirdly,a shallow robust feature downs-ampling module was incorporated to more efficiently extract effective information from the raw image.Finally,the three attention-based features were fused to obtain more representative SAR image features.This approach overcomes the limitation of traditional convolutional neural networks,which only extract features within a local receptive field.By enhancing deep features in both channel and spatial dimensions and integrating features containing global information,the model significantly improves classification accuracy and robustness.Experimental results on the MSTAR dataset under the SOC condition show that MAFNet achieves a clas-sification accuracy of 99.96%,outperforming other existing algorithms.

关键词

雷达图像目标分类/MSTAR数据集/注意力机制/特征提取

Key words

SAR image classification/MSTAR dataset/attention mechanism/feature extraction

分类

信息技术与安全科学

引用本文复制引用

许丽龙,王春柳,侯宇超,王鹏..基于多注意力特征融合的SAR图像目标分类算法[J].中北大学学报(自然科学版),2025,46(5):561-573,13.

基金项目

山西省留学回国人员科技活动择优资助项目(20240011) (20240011)

山西省基础研究计划项目(202303021212164,202103021224195,202103021224212) (202303021212164,202103021224195,202103021224212)

山西省回国留学人员科研项目(2021-108) (2021-108)

中北大学学报(自然科学版)

1673-3193

访问量0
|
下载量0
段落导航相关论文