滚动轴承域适应迁移学习故障识别方法OA
Domain-Adaptive Transfer Learning Method for Rolling Bearing Fault Identification
针对实际工程中轴承数据包含噪声,且难以获取标签数据,导致难以进行故障识别的问题,提出了一种基于小波包一维卷积神经网络与复合域适应损失函数的迁移学习故障识别方法.所提出的小波包分支注意力卷积神经网络(Wavelet Packet Branch Attention Convolutional Neural Network,WPBA-CNN)综合小波包方法与注意力机制对数据特征进行提取,并针对多尺度分支结构特点提出了分支最大均值差异(Branch Maximum Mean Discrepancy,BMMD)损失函数,结合交叉熵损失函数与快速批量核范数最大化(Fast Batch Nuclear-norm Maximization,FBNM)方法,构建了一种新颖的域适应复合损失函数(Domain Adaptation Compound Loss,DACL)进行迁移学习故障识别.结果表明,在-4 dB噪声数据集实验中,WPBA-CNN-DACL的准确率较具有训练干扰的卷积神经网络(Convolution Neural Networks with Training Interference,TICNN)提升了16百分点,其BMMD组件的准确率较传统MMD提高了3.3百分点,20组迁移任务的平均准确率达98.24%.这些实验结果验证了本文方法在噪声抑制与跨域适应中的协同优势,该方法可以作为无标签轴承故障诊断的有效解决方案.
To address challenges in practical engineering where bearing data contains noise and labeled data is scarce,this study proposed a transfer learning method for fault identification using a wavelet packet 1D-CNN and compound domain adaptation loss.The developed wavelet packet branch attention CNN(WPBA-CNN)integrated wavelet packet analysis and attention mechanisms for noise-resistant feature extraction.A branch maximum mean discrepancy(BMMD)loss was designed for multi-scale branches,and combined cross-entropy loss with fast batch nuclear-norm maximization(FBNM)method to form the domain adaptation compound loss(DACL).Experimental results demonstrate that the accuracy of the WPBA-CNN-DACL method increases by 16 percentage points compared to the TICNN method,and the accuracy of the BMMD component increases by 3.3 percentage points compared to the traditional MMD.The average accuracy rate of the 20 migration tasks reaches 98.24%.These experimental results validate the synergistic advantages of our method in noise suppression and cross domain adaptation,and this method can serve as an effective solution for unlabeled bearing fault diagnosis.
申炜;黄晋英;范振芳;王宇轩
中北大学 机械工程学院,山西 太原 030051中北大学 机械工程学院,山西 太原 030051中北大学 机械工程学院,山西 太原 030051中北大学 机械工程学院,山西 太原 030051
机械制造
卷积神经网络迁移学习域适应复合损失函数
convolutional neural networktransfer learningdomain adaptationcomposite loss function
《中北大学学报(自然科学版)》 2025 (5)
632-640,9
山西省基础研究计划资助项目(202203021211096)中国博士后科学基金面上资助项目(2024M752992)
评论