| 注册
首页|期刊导航|航天器环境工程|融合TSO-GPR模型的导电滑环确信可靠性建模与评估

融合TSO-GPR模型的导电滑环确信可靠性建模与评估

何贝琛 李晓阳 王晶 黄首清 张淑敏 王浩 吴冰林 康锐

航天器环境工程2025,Vol.42Issue(5):528-536,9.
航天器环境工程2025,Vol.42Issue(5):528-536,9.DOI:10.12126/see.2025057

融合TSO-GPR模型的导电滑环确信可靠性建模与评估

Belief reliability modeling and evaluation of conductive slip rings using an integrated TSO-GPR model

何贝琛 1李晓阳 2王晶 3黄首清 3张淑敏 4王浩 3吴冰林 5康锐2

作者信息

  • 1. 北京航空航天大学可靠性与系统工程学院,北京 100191||北京卫星环境工程研究所,北京 100094||可靠性与环境工程技术重点实验室,北京 100094
  • 2. 北京航空航天大学可靠性与系统工程学院,北京 100191||可靠性与环境工程技术重点实验室,北京 100094
  • 3. 北京卫星环境工程研究所,北京 100094||可靠性与环境工程技术重点实验室,北京 100094
  • 4. 北京控制工程研究所,北京 100190
  • 5. 中国空间技术研究院卫星应用总体部,北京 100094
  • 折叠

摘要

Abstract

The reliability of conductive slip rings,which are key components of the solar array drive assembly(SADA),is critical to the satellite's service life.Traditional analytical models struggle to characterize the complex nonlinear relationship between slip-ring wear and reliability.To address this issue,an artificial intelligence model integrating Tuna Swarm Optimization and Gaussian Process Regression(TSO-GPR)was proposed and trained using ground wear test data.An interdisciplinary equation was established to map the wear rate to the reed pressure and the hardness of the brush block material,and a belief reliability model was subsequently developed to account for uncertainties from multiple parameters.Validation results indicated that the TSO-GPR model reduced the root mean square error(RMSE)and mean absolute error(MAE)by approximately two orders of magnitude compared to the conventional GPR model,demonstrating significantly improved predictive accuracy and generalization capability for conductive slip-ring life prediction.Furthermore,sensitivity analysis revealed that the hardness of the brush block material had a greater influence on reliability than the reed pressure.These findings provide a useful reference for the design of high-reliability conductive slip rings.

关键词

导电滑环/磨损/金枪鱼群优化-高斯过程回归模型/确信可靠性/敏感性分析

Key words

conductive slip ring/wear/Tuna Swarm Optimization and Gaussian Process Regression(TSO-GPR)model/belief reliability/sensitivity analysis

分类

航空航天

引用本文复制引用

何贝琛,李晓阳,王晶,黄首清,张淑敏,王浩,吴冰林,康锐..融合TSO-GPR模型的导电滑环确信可靠性建模与评估[J].航天器环境工程,2025,42(5):528-536,9.

基金项目

国家国防科工局技术基础科研项目(编号:JSZL2023203A003) (编号:JSZL2023203A003)

航天器环境工程

1673-1379

访问量0
|
下载量0
段落导航相关论文