| 注册
首页|期刊导航|航天器环境工程|基于ST-ResNet的印制电路板红外热成像故障诊断方法

基于ST-ResNet的印制电路板红外热成像故障诊断方法

李昊 黄首清 许庶 方舟 余溢方 丁亮

航天器环境工程2025,Vol.42Issue(5):557-565,9.
航天器环境工程2025,Vol.42Issue(5):557-565,9.DOI:10.12126/see.2025063

基于ST-ResNet的印制电路板红外热成像故障诊断方法

A fault diagnosis method for printed circuit boards based on ST-ResNet and infrared thermography

李昊 1黄首清 1许庶 1方舟 2余溢方 1丁亮1

作者信息

  • 1. 北京卫星环境工程研究所,北京 100094||可靠性与环境工程技术重点实验室,北京 100094
  • 2. 北京化工大学机电工程学院,北京 100029
  • 折叠

摘要

Abstract

Infrared thermography-based fault diagnosis of printed circuit boards(PCBs)is gaining attention in field applications such as emergency repairs and equipment inspections due to its rapid detection,simple operation,and equipment versatility.However,existing methods often require strict image acquisition conditions and are not suitable for portable devices.To overcome these limitations,a novel fault diagnosis method for PCBs using portable devices is proposed,based on a convolutional neural network(CNN)for infrared thermogram classification.A pre-trained Residual Neural Network(ResNet)was employed as the backbone to automatically extract diagnostic features from the images.In addition,a Spatial Transformer Network(STN)was integrated at the input stage to enhance the network's robustness to viewpoint variations,thereby reducing the dependence on strict imaging conditions.Five-fold cross-validation was performed on a self-built dataset containing multi-view images.The results demonstrated that the proposed method achieved an average accuracy of 93%.This study provides a new approach for the development of portable infrared fault diagnosis devices for PCBs.

关键词

故障诊断/印制电路板/红外热成像/卷积神经网络/特征提取

Key words

fault diagnosis/printed circuit board(PCB)/infrared thermography/convolutional neural network(CNN)/feature extraction

分类

信息技术与安全科学

引用本文复制引用

李昊,黄首清,许庶,方舟,余溢方,丁亮..基于ST-ResNet的印制电路板红外热成像故障诊断方法[J].航天器环境工程,2025,42(5):557-565,9.

基金项目

国家国防科工局技术基础科研计划项目(编号:JSZL2021601B001-38) (编号:JSZL2021601B001-38)

航天器环境工程

1673-1379

访问量0
|
下载量0
段落导航相关论文