| 注册
首页|期刊导航|西华大学学报(自然科学版)|基于机器学习的旋转机械故障识别算法的输入特征综述

基于机器学习的旋转机械故障识别算法的输入特征综述

徐五一 杨岗 卫昱乾 邓琴

西华大学学报(自然科学版)2025,Vol.44Issue(6):13-27,15.
西华大学学报(自然科学版)2025,Vol.44Issue(6):13-27,15.DOI:10.12198/j.issn.1673-159X.5125

基于机器学习的旋转机械故障识别算法的输入特征综述

A Review of Machine Learning-Based Input Features for Rotating Machinery Fault Identification

徐五一 1杨岗 2卫昱乾 3邓琴3

作者信息

  • 1. 中车株洲电力机车研究所有限公司,湖南 株洲 412001
  • 2. 西南交通大学机械工程学院,四川 成都 610036
  • 3. 西南交通大学唐山研究院,河北 唐山 063000
  • 折叠

摘要

Abstract

The continuous application of machine learning theory has promoted the in-depth develop-ment of fault diagnosis.There are various types of machine learning-based fault diagnosis algorithms for ro-tating machinery with various input feature forms.In order to deeply understand the effects of various fea-ture forms,the existing research on the input feature forms of machine learning algorithms is reviewed in the light of the current research status in this field.The basic generation principles,application status,ad-vantages and disadvantages of statistical features,information entropy,time-frequency map feature para-meters and grayscale map,Gramian angular field image,spectral kurtosis map,wavelet coefficient matrix,and time-frequency map feature forms are discussed.Then the challenges and future development direc-tions of machine learning-based rotating machinery fault diagnosis are summarized.Finally,the challenges and development prospects of machine learning-based fault diagnosis of rotating machinery are summar-ized and it points out that the development trend of machine learning input features in the future will focus on automated feature engineering,feature dimension reduction technology and multimodal fusion.

关键词

旋转机械/故障诊断/机器学习/数字特征/图像特征

Key words

rotating machinery/fault diagnosis/machine learning/digital features/image features

分类

机械制造

引用本文复制引用

徐五一,杨岗,卫昱乾,邓琴..基于机器学习的旋转机械故障识别算法的输入特征综述[J].西华大学学报(自然科学版),2025,44(6):13-27,15.

基金项目

国家重点研发计划(2020YFB1200300ZL). (2020YFB1200300ZL)

西华大学学报(自然科学版)

1673-159X

访问量0
|
下载量0
段落导航相关论文