| 注册
首页|期刊导航|物联网学报|融合注意力机制的3D打印缺陷检测算法

融合注意力机制的3D打印缺陷检测算法

张俊杰 沈震 方启航 董西松 王迪 熊刚

物联网学报2025,Vol.9Issue(3):132-142,11.
物联网学报2025,Vol.9Issue(3):132-142,11.DOI:10.11959/j.issn.2096-3750.2025.00464

融合注意力机制的3D打印缺陷检测算法

A 3D printing defect detection algorithm incorporating attention mechanism

张俊杰 1沈震 2方启航 1董西松 2王迪 3熊刚2

作者信息

  • 1. 中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190||中国科学院大学人工智能学院,北京 100049
  • 2. 中国科学院自动化研究所多模态人工智能系统全国重点实验室,北京 100190||中国科学院自动化研究所北京市智能化技术与系统工程技术研究中心,北京 100190
  • 3. 华南理工大学机械与汽车工程学院,广东 广州 510641
  • 折叠

摘要

Abstract

In recent years,3D printing technology has played an increasingly important role in a growing number of industries.However,as a relatively new technology,it tends to exhibit more defects during the printing process compared to traditional manufacturing methods.These defects can significantly impact the performance of the final product.Given that 3D printed parts typically have complex and highly optimized geometric shapes,traditional detection technologies struggle to meet the demands for precision and efficiency.To address this challenge,this paper introduces a 3D printing defect detection algorithm based on an improved version of YOLOv5.The algorithm makes extensive refinements to the YOLOv5 model,achieving model lightweighting by replacing the loss function and introducing an attention mechanism.The newly designed detection system is characterized by a smaller parameter scale,rapid inference speed,high detection accuracy,and strong robustness.Compared to the original YOLOv5s model,the improved lightweight model has achieved a detection accuracy of 94.2%,and has nearly halved the parameter scale.This advancement not only enhances detection efficiency but also provides an effective technical solution for 3D printing defect detection and fault diagnosis.

关键词

3D打印/缺陷检测/深度学习/YOLOv5/注意力机制

Key words

3D printing/defect detection/deep learning/YOLOv5/attention

分类

信息技术与安全科学

引用本文复制引用

张俊杰,沈震,方启航,董西松,王迪,熊刚..融合注意力机制的3D打印缺陷检测算法[J].物联网学报,2025,9(3):132-142,11.

基金项目

国家自然科学基金资助项目(No.92267103,No.92360307,No.62461160259)The National Natural Science Foundation of China(No.92267103,No.92360307,No.62461160259) (No.92267103,No.92360307,No.62461160259)

物联网学报

2096-3750

访问量0
|
下载量0
段落导航相关论文