| 注册
首页|期刊导航|西安科技大学学报|多尺度特征融合的岩性识别模型

多尺度特征融合的岩性识别模型

贾澎涛 成宇超 蒋永杰 李娜

西安科技大学学报2025,Vol.45Issue(5):904-915,12.
西安科技大学学报2025,Vol.45Issue(5):904-915,12.DOI:10.13800/j.cnki.xakjdxxb.2025.0507

多尺度特征融合的岩性识别模型

A multi-scale feature fusion model for lithology identification

贾澎涛 1成宇超 1蒋永杰 2李娜1

作者信息

  • 1. 西安科技大学人工智能与计算机学院,陕西西安 710054
  • 2. 陕西煤业集团黄陵建庄矿业有限公司,陕西延安 727300
  • 折叠

摘要

Abstract

To address the issues in the existing lithology recognition methods,such as insufficient fea-ture representation,limited model generalization ability and low recognition accuracy,a novel lithology recognition model based on multi-scale feature fusion was proposed,named MSFR-Net.A Feature Ex-traction Module(FEM)was designed from the raw logging curves.It combined Bidirectional Gated Re-current Units(BiGRU)and an even-odd sequence interaction mechanism to perform deep mining of multi-scale features from the logging curves.A Random Convolution Module was constructed,which uti-lized a dynamic convolution kernel parameter optimization strategy to effectively capture spatial correla-tions between strata features.Based on a decision module consisting of six base classifiers,a multi-clas-sifier collaborative decision mechanism was employed to improve the model's classification performance and complete the lithology recognition task.The results show that MSFR-Net performs better in such key metrics as accuracy,precision,recall,and F1-score in tests based on real logging data,compared to ten commonly used lithology recognition models,such as SVM and GRU.In the D-well experiment,MSFR-Net achieves a prediction accuracy of 95.1%for major lithology categories and 72.7%for mi-nor lithology categories,an improvement of 13.27%over SVM and 12.61%over LSTM.MSFR-Net,through the synergistic optimization of multi-scale feature fusion and ensemble learning strategies,effec-tively enhances the extraction of key geological features and the model's generalization performance,providing a new technical approach for lithology recognition.

关键词

测井曲线/岩性识别/特征融合/Rocket网络/多分类器

Key words

well log curves/lithology identification/feature fusion/Rocket network/multi-classifier

分类

能源科技

引用本文复制引用

贾澎涛,成宇超,蒋永杰,李娜..多尺度特征融合的岩性识别模型[J].西安科技大学学报,2025,45(5):904-915,12.

基金项目

国家自然科学基金项目(62002285) (62002285)

西安科技大学学报

OA北大核心

1672-9315

访问量0
|
下载量0
段落导航相关论文