| 注册
首页|期刊导航|中国烟草学报|基于改进YOLOv8 的烟叶碎片中杂物的识别

基于改进YOLOv8 的烟叶碎片中杂物的识别

楚晗 童帅帅 张相辉 韩校星 徐帅华 郭坤 张攀峰 党霞

中国烟草学报2025,Vol.31Issue(5):31-40,10.
中国烟草学报2025,Vol.31Issue(5):31-40,10.DOI:10.16472/j.chinatobacco.2025.T0043

基于改进YOLOv8 的烟叶碎片中杂物的识别

Identification of debris in tobacco leaf fragments based on an improved YOLOv8 model

楚晗 1童帅帅 2张相辉 1韩校星 2徐帅华 2郭坤 3张攀峰 1党霞1

作者信息

  • 1. 天昌国际烟草有限公司,河南省许昌市五一路 461000
  • 2. 天昌国际烟草有限公司天昌复烤厂,许昌高新产业技术开发区 461000
  • 3. 河南省烟草公司信阳市公司,河南省信阳市羊山新区新一路北 460000
  • 折叠

摘要

Abstract

[Purpose]This study aimed to improve the removal efficiency of debris in the threshing and redrying process of tobacco leaves and to address challenges such as complex scene interference and missed detection of small targets.[Methods]A debris detection method based on an improved YOLOv8 model was proposed.A multi-branch coordinate attention fusion module(MBCAF)was designed to enhance multi-scale feature extraction,and a large-kernel convolutional attention mechanism(LKASPPF)was introduced to optimize global feature capture.In addition,an extra detection head was added to reduce the missed detection rate of small targets.[Results]After improvement,the model achieved a mean average precision(mAP)of 98.5%,representing a 15.1%increase compared with the baseline YOLOv8 model,while significantly reducing the missed detection rate of small targets.Furthermore,validation on real-world production lines confirmed that the model enables high-precision,real-time debris detection and removal under complex production environments.[Conclusion]The proposed method effectively realizes debris detection and removal in the centralized processing line of threshing and redrying fragments,providing a feasible solution for automatic impurity removal and intelligent production in tobacco leaf processing.

关键词

烟叶分拣/杂物检测/YOLOv8/多分支坐标注意力

Key words

tobacco sorting/debris detection/YOLOv8/multi-branch coordinate attention(MBCAF)

引用本文复制引用

楚晗,童帅帅,张相辉,韩校星,徐帅华,郭坤,张攀峰,党霞..基于改进YOLOv8 的烟叶碎片中杂物的识别[J].中国烟草学报,2025,31(5):31-40,10.

基金项目

天昌国际烟草有限公司重点项目"打叶复烤非烟物质智能剔除技术研究"(2023410003440013) (2023410003440013)

中国烟草学报

OA北大核心

1004-5708

访问量0
|
下载量0
段落导航相关论文