| 注册
首页|期刊导航|交通节能与环保|基于机器学习的盾构推力预测研究

基于机器学习的盾构推力预测研究

王文正 林雪冰 宋克志 师鸿儒 邵煜琪 邵长至

交通节能与环保2025,Vol.21Issue(5):105-109,114,6.
交通节能与环保2025,Vol.21Issue(5):105-109,114,6.DOI:10.3969/j.issn.1673-6478.2025.05.021

基于机器学习的盾构推力预测研究

Research on Thrust Prediction of Shield Tunneling Based on Machine Learning

王文正 1林雪冰 1宋克志 2师鸿儒 2邵煜琪 2邵长至2

作者信息

  • 1. 北京市政建设集团,北京 100044
  • 2. 鲁东大学土木工程学院,山东 烟台 264025
  • 折叠

摘要

Abstract

There are many parameters for shield tunneling,among which the shield thrust has a significant impact on soil pressure balance and formation settlement.Effective prediction of shield tunneling thrust can guide construction and reduce engineering accidents,making it a hot research topic in intelligent shield tunneling.Based on the excavation data of the shield tunnel on the R2 line of Jinan Metro,a thrust prediction model was established using three algorithms:random forest,XGBoost,and BP neural network.The model was evaluated through cross validation,and the goodness of fit R2(R-Squared),mean square error(MSE),and mean absolute error(MAE)were selected as the evaluation indicators for the model.The comparative analysis between the predicted and measured values of shield tunneling thrust shows that the R2 values of the three algorithm models are all greater than 0.6,which can meet the engineering accuracy requirements.The XGBoost model has the best prediction effect.

关键词

机器学习/盾构推力预测/随机森林/XGboost/BP神经网络

Key words

machine learning/shield thrust force prediction/random forest/XGboost/BP neural network

分类

交通工程

引用本文复制引用

王文正,林雪冰,宋克志,师鸿儒,邵煜琪,邵长至..基于机器学习的盾构推力预测研究[J].交通节能与环保,2025,21(5):105-109,114,6.

基金项目

国家自然科学基金项目(51978322) (51978322)

交通节能与环保

1673-6478

访问量0
|
下载量0
段落导航相关论文