| 注册
首页|期刊导航|吉林大学学报(信息科学版)|基于改进YOLACT++的语义SLAM系统

基于改进YOLACT++的语义SLAM系统

任伟建 沈文旭 任璐 张永丰

吉林大学学报(信息科学版)2025,Vol.43Issue(5):1006-1013,8.
吉林大学学报(信息科学版)2025,Vol.43Issue(5):1006-1013,8.

基于改进YOLACT++的语义SLAM系统

Semantic SLAM System Based on Improved YOLACT++

任伟建 1沈文旭 1任璐 2张永丰3

作者信息

  • 1. 东北石油大学电气信息工程学院,黑龙江大庆 163319
  • 2. 海洋石油工程股份有限公司,天津 300450
  • 3. 大庆油田有限责任公司第二采油厂,黑龙江大庆 163414
  • 折叠

摘要

Abstract

SLAM(Simultaneous Localization and Mapping)technology is a camera pose estimation based on static scene features.It is susceptible to dynamic objects in the process of feature calculation and matching at its front end.Therefore a method of instance segmentation combined with multi-view geometric constraints is proposed to improve the front-end feature processing of visual SLAM and eliminate the interference of dynamic information.Specifically,in the front end of the ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping3)framework,the YOLACT++(You Only Look At CoefficienTs++)instance segmentation thread is paralleled,and the segmented results are used to supplement the multi-view geometric constraint method testing the dynamic consistency of feature points.The EfficientNetV2 network is used to replace the original backbone network of YOLACT++,and the TensorRT is used to quantify the instance segmentation model to reduce the front-end computing pressure of the algorithm.The test of TUM data set shows that the positioning accuracy of the proposed algorithm in high dynamic environment is 80.6%higher than that of ORB-SLAM3 algorithm.

关键词

语义SLAM/YOLACT++分割算法/多视几何约束/动态场景

Key words

semantic simultaneous localization and mapping(SLAM)/YOLACT++segmentation algorithm/multi-view geometric constraints/dynamic scene

分类

计算机与自动化

引用本文复制引用

任伟建,沈文旭,任璐,张永丰..基于改进YOLACT++的语义SLAM系统[J].吉林大学学报(信息科学版),2025,43(5):1006-1013,8.

基金项目

国家自然科学基金资助项目(61933007) (61933007)

河北省自然科学基金面上资助项目(D2022107001) (D2022107001)

吉林大学学报(信息科学版)

1671-5896

访问量0
|
下载量0
段落导航相关论文