| 注册
首页|期刊导航|重庆理工大学学报|融合动态重加权协同训练的半监督睡眠分期方法

融合动态重加权协同训练的半监督睡眠分期方法

李华 赵文丽 张航 李奇 武岩 刘方姿

重庆理工大学学报2025,Vol.39Issue(19):141-148,8.
重庆理工大学学报2025,Vol.39Issue(19):141-148,8.DOI:10.3969/j.issn.1674-8425(z).2025.10.017

融合动态重加权协同训练的半监督睡眠分期方法

Research on semisupervised sleep staging method with integrated dynamic re-weighting co-training

李华 1赵文丽 1张航 1李奇 2武岩 2刘方姿1

作者信息

  • 1. 长春理工大学 计算机科学技术学院,长春 130022
  • 2. 长春理工大学 计算机科学技术学院,长春 130022||长春理工大学中山研究院,广东 中山 528400||吉林省脑信息与智能科学国际联合研究中心,长春 130022
  • 折叠

摘要

Abstract

To address the pseudo-label noise and model convergence in semi-supervised sleep staging,this paper proposes a dynamic re-weighting co-training(DRCT)framework.It enhances model robustness and pseudo-label reliability through synergistic optimization and dynamic sample re-weighting.During the pre-training,subset partitioning or construction of different model architectures enhance initial model diversity.During retraining,the framework implements cross-model pseudo-label interactions and introduces a consistency-based dynamic re-weighting mechanism.The mechanism prevents undesirable model convergence and optimizes classification performance.Experimental results demonstrate it achieves an accuracy of 81.2%and 79.8%on the Sleep-EDF and Sleep-EDFx datasets,significantly outperforming existing approaches.

关键词

动态重加权/协同训练/半监督/睡眠分期/伪标签

Key words

dynamic re-weighting/co-training/semi-supervised/sleep staging/pseudo-label

分类

计算机与自动化

引用本文复制引用

李华,赵文丽,张航,李奇,武岩,刘方姿..融合动态重加权协同训练的半监督睡眠分期方法[J].重庆理工大学学报,2025,39(19):141-148,8.

基金项目

吉林省科技发展计划项目(20240101344JC,20230203098SF) (20240101344JC,20230203098SF)

中山市社会福利与基础研究项目(2023B2015) (2023B2015)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文