| 注册
首页|期刊导航|重庆邮电大学学报(自然科学版)|深度学习方法在工程图纸标识定位与识别中的应用研究

深度学习方法在工程图纸标识定位与识别中的应用研究

肖鑫 陈青松 吴思远 胡瑞

重庆邮电大学学报(自然科学版)2025,Vol.37Issue(5):696-707,12.
重庆邮电大学学报(自然科学版)2025,Vol.37Issue(5):696-707,12.DOI:10.3979/j.issn.1673-825X.202408260226

深度学习方法在工程图纸标识定位与识别中的应用研究

Research on the application of deep learning methods in identification localization and recognition of engineering drawings

肖鑫 1陈青松 1吴思远 2胡瑞1

作者信息

  • 1. 中冶赛迪工程技术股份有限公司数字化中心,重庆 401122
  • 2. 重庆邮电大学计算机科学与技术学院,重庆 400065
  • 折叠

摘要

Abstract

The localization and recognition of key symbols in engineering drawings have long been essential applications in computer vision.Compared with traditional methods,deep learning-based text detection approaches offer higher detection efficiency and accuracy.It is therefore necessary to apply existing text detection algorithms to engineering drawing recogni-tion tasks.This paper proposes a deep learning-based method for the localization and recognition of key symbols in engineer-ing drawings,focusing on the detection and recognition of index symbols and dimension symbols.For index symbol localiza-tion,the drawings are cropped to a uniform size,and non-maximum suppression is used to remove redundant candidate bo-xes.For dimension symbol localization,a complete detection is performed on the masked drawings,and the intersection-o-ver-union between each detected box and index symbol location is calculated to filter out partial data.Experimental results demonstrate that the proposed method achieves high precision and recall in both the localization and recognition of index and dimension symbols in engineering drawings.

关键词

工程图纸/目标检测/字符识别/深度学习

Key words

engineering drawings/object detection/character recognition/deep learning

分类

计算机与自动化

引用本文复制引用

肖鑫,陈青松,吴思远,胡瑞..深度学习方法在工程图纸标识定位与识别中的应用研究[J].重庆邮电大学学报(自然科学版),2025,37(5):696-707,12.

基金项目

国家自然科学基金项目(62302074) (62302074)

重庆市教委科学技术研究项目(KJQN202300631)National Natural Science Foundation of China(62302074) (KJQN202300631)

Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300631) (KJQN202300631)

重庆邮电大学学报(自然科学版)

OA北大核心

1673-825X

访问量0
|
下载量0
段落导航相关论文