| 注册
首页|期刊导航|大数据|构建企业级人工智能高质量数据集:方法与路径

构建企业级人工智能高质量数据集:方法与路径

姜春宇 白玉真 刘渊 王超伦

大数据2025,Vol.11Issue(6):47-56,10.
大数据2025,Vol.11Issue(6):47-56,10.DOI:10.11959/j.issn.2096-0271.2025088

构建企业级人工智能高质量数据集:方法与路径

Building high-quality datasets for enterprise-level artificial intelligence:methods and pathways

姜春宇 1白玉真 1刘渊 1王超伦1

作者信息

  • 1. 中国信息通信研究院,北京 100191
  • 折叠

摘要

Abstract

Currently,the artificial intelligence(AI)datasets in our country face challenges,including the lack of quality evaluation methods and an unclear capability-building system.This article reviews the composition and classification of AI datasets and combines structured data quality assessment to propose a set of evaluation methods for AI dataset quality.Based on industry practices,it distills a high-quality AI data engineering system,summarizes the pathways for enterprises to develop capability building,and provides policy recommendations for constructing high-quality datasets in our country.

关键词

人工智能数据集/数据质量评估/人工智能数据工程

Key words

artificial intelligence datasets/data quality assessment/AI data engineering

分类

计算机与自动化

引用本文复制引用

姜春宇,白玉真,刘渊,王超伦..构建企业级人工智能高质量数据集:方法与路径[J].大数据,2025,11(6):47-56,10.

大数据

2096-0271

访问量0
|
下载量0
段落导航相关论文