首页|期刊导航|电力学报|500kV变电站接地作业机器人的作业控制方法研究

500kV变电站接地作业机器人的作业控制方法研究OA

Research on the Operation Control Method of Grounding Operation Robot in 500 kV Substation

中文摘要英文摘要

针对500 kV变电站中人工执行接地作业效率低下与高风险问题,研制了一种采用无人机挂绳与机器人悬吊上线的紧凑轻型接地作业机器人.机器人采用YOLOv11目标检测算法对猴头线夹与导线进行识别,结合双目相机获取相应部件的三维坐标.在紧固作业时,利用一种基于MSFNet网络的间隙识别算法控制猴头线夹与导线间的间隙.在猴头线夹预挂设过程中使用基于位置、速度、电流的三环控制方法将猴头线夹挂设于导线上,随后通过RBF-PID控制方法控制旋拧机械手将猴头线夹紧固在导线上.仿真和现场试验结果显示,视觉识别算法对猴头线夹与导线整体平均识别率分别达到97%和87.5%,双目相机测量相应部件的三维坐标与它的实际坐标偏差小于1 cm,符合机器人作业要求;基于RBF-PID控制方法在间隙识别算法的反馈下能够有效完成猴头线夹紧固作业,具有良好的鲁棒性,验证了作业控制方法的可行性.本文所研制的接地机器人能够高效、高质量地执行变电站的接地作业,具有显著的实际应用价值与意义.

To address the inefficiency and high risk of manual grounding operations in 500 kV substations,a com-pact and lightweight grounding robot using drone rope hanging and robot suspension system is developed.The YOLOv11 target detection algorithm is employed to recognize the monkey head clamp and conductor,and bin-ocular cameras are used to obtain the three-dimensional coordinates of the relevant components.An MSFNet-based gap recognition algorithm between the monkey head clamp and conductor is proposed to assist the robot in controlling the gap during the clamping operation.A three-ring control based on position,speed,and current is used to hang the monkey head clamp on the conductor,followed by RBF-PID control of the rotational manipu-lator to secure the clamp on the conductor.Simulations and field tests show that the visual recognition algorithm achieves overall average recognition rates of 97%and 87.5%for the monkey head clamp and conductor,respec-tively.The three-dimensional coordinates measured by binocular camera deviate less from actual coordinates by 1 cm,meeting operational requirements.The RBF-PID control,aided by feedback from the gap recognition al-gorithm,effectively and robustly completed the clamping operation,confirming the control method's feasibili-ty.The designed grounding robot can efficiently and high-quality perform grounding operations in substations,and have significant practical application value and significance.

黎晋宏;王旭红;樊绍胜

长沙理工大学 电气与信息工程学院,长沙 410114长沙理工大学 电气与信息工程学院,长沙 410114长沙理工大学 电气与信息工程学院,长沙 410114

动力与电气工程

变电站机器人接地作业YOLOv11三维定位间隙识别MSFNetRBF-PID

substationrobotgrounding operationYOLOv11three-dimensional positioninggap recognitionMSFNetRBF-PID

《电力学报》 2025 (3)

182-194,13

国家自然科学基金(62473065)湖南省自然科学基金项目(2023JJ50078).

10.13357/j.dlxb.2025.020

评论