| 注册
首页|期刊导航|电力系统自动化|考虑行业发展因果传导路径的行业用电量预测

考虑行业发展因果传导路径的行业用电量预测

马伟 刘曌 和敬涵 王小君 李佳明 窦嘉铭

电力系统自动化2025,Vol.49Issue(21):98-107,10.
电力系统自动化2025,Vol.49Issue(21):98-107,10.DOI:10.7500/AEPS20250215003

考虑行业发展因果传导路径的行业用电量预测

Industrial Electricity Consumption Prediction Considering Causal Transmission Pathway in Industry Development

马伟 1刘曌 1和敬涵 1王小君 1李佳明 2窦嘉铭1

作者信息

  • 1. 北京交通大学电气工程学院,北京市 100044
  • 2. 电力规划设计总院,北京市 100120
  • 折叠

摘要

Abstract

Electricity demand can reflect the economic development trends,and the development of upstream and downstream industries leads to the causal relationships between the electricity demands of various industries.Existing industrial electricity consumption prediction lacks the analysis of causal transmission pathways among industries,and the prediction algorithms ignore the coupling relationship between time series and features.This results in issues such as unclear input causal transmission pathways,limited policy relevance,and low prediction accuracy in industrial electricity consumption prediction model.Therefore,this paper proposes a industrial electricity consumption prediction method considering causal transmission pathways in industry development.First,to explore the production relationships among upstream and downstream industries,the greedy equivalence search algorithm is employed to construct a causal essential graph among 47 industries,clarifying the causal transmission pathways among various industries.Then,these causal transmission pathways are used as constraints for the convergent cross-mapping algorithm to adaptively calculate the optimal time lag for causal transmission pathways.Finally,a temporal-feature mixing prediction algorithm is proposed,which sequentially incorporates causal transmission pathways among various industries as inputs to the prediction model to predict the electricity demand across various industries.The applicability and effectiveness of the proposed method are validated using actual electricity consumption data from 47 industries in China.

关键词

因果传导/预测/行业用电量/贪婪等价搜索/收敛交叉映射

Key words

causal transmission/prediction/industrial electricity consumption/greedy equivalence search/convergent cross-mapping

引用本文复制引用

马伟,刘曌,和敬涵,王小君,李佳明,窦嘉铭..考虑行业发展因果传导路径的行业用电量预测[J].电力系统自动化,2025,49(21):98-107,10.

基金项目

国家自然科学基金委员会-联合基金集成项目:"新型配电系统形态演化与安全高效运行的基础理论及方法"(U23B6007). This work is supported by National Natural Science Foundation of China(No.U23B6007). (U23B6007)

电力系统自动化

OA北大核心

1000-1026

访问量6
|
下载量0
段落导航相关论文