多传感器点云数据融合算法环境感知研究OA
Research on Environmental Perception Using Multi-Sensor Point Cloud Data Fusion Algorithm
为提高室内移动机器人对静态与动态障碍物的感知精度,本文提出一种多传感器点云数据融合算法.首先将深度相机数据转换为点云,并提出超声波数据点云化算法,将一维声波数据扩展为二维点云;随后融合激光雷达、相机及超声波点云,形成统一的环境表征.实验表明,相较于单一激光雷达,本算法对镂空与透明静态障碍物的检测相对误差分别降低 94.64%与 95.04%,动态障碍物检测误差减少 84.32%,显著提升了环境感知的准确性.
To improve the perception accuracy of indoor mobile robots towards static and dynamic obstacles,this paper proposes a multi-sensor point cloud data fusion algorithm.Firstly,the depth camera data is converted into a point cloud,and an ultrasonic data point cloud transformation algorithm is proposed to extend one-dimensional acoustic data into two-dimensional point clouds;Subsequently,laser radar,camera,and ultrasonic point cloud are integrated to form a unified environmental representation.Experiments have shown that compared to a single LiDAR,this algorithm reduces the relative error of detecting hollow and transparent static obstacles by 94.64%and 95.04%,respectively,and reduces the error of detecting dynamic obstacles by 84.32%,significantly improving the accuracy of environmental perception.
王涵;孟锁;刘益剑
南京师范大学电气与自动化工程学院 南京 210023南京师范大学电气与自动化工程学院 南京 210023南京师范大学电气与自动化工程学院 南京 210023
计算机与自动化
多传感器融合点云融合透明障碍物检测动态障碍物感知
Multi-Sensor FusionPoint Cloud FusionTransparent Obstacle DetectionDynamic Obstacle Perception
《福建电脑》 2025 (11)
8-14,7
评论