| 注册
首页|期刊导航|飞控与探测|基于概率时间序列注意力模型的概率图优化组合导航算法

基于概率时间序列注意力模型的概率图优化组合导航算法

张雷 徐钦 赵万良 成宇翔 孙研

飞控与探测2025,Vol.8Issue(5):1-10,10.
飞控与探测2025,Vol.8Issue(5):1-10,10.DOI:10.20249/j.cnki.2096-5974.2025.05.001

基于概率时间序列注意力模型的概率图优化组合导航算法

Probabilistic Graph Optimization Integrated Navigation Based on Probabilistic Time Series Transformer

张雷 1徐钦 2赵万良 3成宇翔 3孙研2

作者信息

  • 1. 同济大学上海自主智能无人系统科学中心·上海·201210||同济大学道路与交通工程教育部重点实验室·上海·201804
  • 2. 同济大学道路与交通工程教育部重点实验室·上海·201804
  • 3. 上海航天控制技术研究所·上海·201109
  • 折叠

摘要

Abstract

To satisfy the modern track traffic's demand for maintaining high precision and continui-ty of navigation under complex environmental conditions,and to address the issue of positioning drift caused by data outages in nonlinear dynamic integrated navigation systems,this paper propo-ses a novel adaptive estimation method for observation errors in nonlinear dynamic integrated navi-gation systems.This method is based on a Probabilistic Time Series Transformer model,aiming to resolve the aforementioned issues.By introducing self-learning capabilities through the Probabi-listic Time Series Transformer,the method adaptively adjusts the impact of state prediction and observation information outages on the dynamic navigation system.The Probabilistic Time Series Transformer is composed of a dual-loop system of a generative model and an inference model,combined with LSTM network to tackle the challenges of multivariate time series modeling.The integrated navigation system based on the Probabilistic Time Series Transformer optimizes the er-ror compensation mechanism by establishing a relationship between the current Kalman filter gain and the optimal estimation error,thereby improving the accuracy and stability of the nonlinear navigation system.Experimental results demonstrate that the proposed method not only effectively controls the impact of GNSS outages on the nonlinear navigation system but also accu-rately estimates and compensates for observation model system errors.The average positioning er-ror in various complex scenarios is less than 10 m.The suppression of positioning drift in the ob-servation model is better than that of other filtering methods.

关键词

组合导航/注意力模型/时间序列/轨道交通/卡尔曼滤波

Key words

integrated navigation/attention model/time series/track traffic/Kalman filtering

分类

电子信息工程

引用本文复制引用

张雷,徐钦,赵万良,成宇翔,孙研..基于概率时间序列注意力模型的概率图优化组合导航算法[J].飞控与探测,2025,8(5):1-10,10.

基金项目

国家自然科学基金(重点项目)(52432012) (重点项目)

飞控与探测

2096-5974

访问量2
|
下载量0
段落导航相关论文