| 注册
首页|期刊导航|高师理科学刊|利用割圆术计算圆周率的一个改进迭代公式

利用割圆术计算圆周率的一个改进迭代公式

王在华 李静

高师理科学刊2025,Vol.45Issue(10):1-4,4.
高师理科学刊2025,Vol.45Issue(10):1-4,4.DOI:10.3969/j.issn.1007-9831.2025.10.001

利用割圆术计算圆周率的一个改进迭代公式

An improved iterative formula for calculating π by using the method of inscribed polygons

王在华 1李静1

作者信息

  • 1. 陆军工程大学 基础部,江苏 南京 211101
  • 折叠

摘要

Abstract

The method of inscribed polygons was the primary method for calculating π in ancient times,where only the four basic arithmetic operations as well as the extraction of square roots could be used.Manual computation of square roots is inherently challenging,and even more so for ancient mathematicians.Consequently,reducing the number of square root operations hold critical significance for enhancing both the accuracy and efficiency.The paper briefly revisits LIU Hui's method of inscribed polygons at first,and then presents a new iterative formula for calculating the side length of the inscribed polygons.The new formula reduces the number of square root operations,and thus it is easier to calculate the value of π by using the method of inscribed polygons.

关键词

割圆术/圆周率/迭代

Key words

method of inscribed polygons/π/iteration

分类

数学

引用本文复制引用

王在华,李静..利用割圆术计算圆周率的一个改进迭代公式[J].高师理科学刊,2025,45(10):1-4,4.

基金项目

陆军工程大学教育教学课题(GJ23ZD009) (GJ23ZD009)

高师理科学刊

1007-9831

访问量0
|
下载量0
段落导航相关论文